

An Adaptive Particle Swarm Optimizer Using Balanced Explorative

and Exploitative Behaviors

Sayan Ghosh
1
, Debarati Kundu

1
, Kaushik Suresh

1
, Swagatam Das

1
 and Ajith Abraham

2

1Department of Electronics and Telecommunication Engineering

Jadavpur University, Kolkata, India

2Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and Technology,

Trondheim, Norway. Email: ajith.abraham@ieee.org

Abstract- Particle Swarm Optimization (PSO) has

recently emerged as a nature inspired algorithm for real

parameter optimization. This article describes a method

for improving the final accuracy and the convergence

speed of PSO by adding a new coefficient to the position

updating equation and modulating the inertia weight.

This work also mathematically analyzes the effect of this

modification on the PSO algorithm. The new algorithm

has been shown to be statistically significantly better

than four recent variants of PSO on a six-functions test-

suite.

1.Introduction

 The concept of particle swarms, although initially

introduced for simulating human social behavior, has

become very popular these days as an efficient means of

intelligent search and optimization. The Particle Swarm

Optimization (PSO) [1, 2], as it is called now, does not

require any gradient information of the function to be

optimized, uses only primitive mathematical operators and

is conceptually very simple. PSO emulates swarming

behavior of insects, and also draws inspiration from the

boid’s method of Craig Reynolds and socio-cognition [2].

Particles are conceptual entities, which search through a

multi-dimensional search space. At any particular instant,

each particle has a position and velocity. The position

vector of a particle with respect to the origin of the search

space represents a trial solution to the search problem.

PSO is however not free from false and/or premature

convergence, especially over multimodal fitness landscapes.

In this article, we describe a new variant of the basic PSO,

which improves the performance of the algorithm. A

momentum factor has been added to the position updating

equation of the classical PSO, which gives greater mobility

to the particles even when their velocities become very low

due to false convergence to some local minima. Also, the

inertia weight has been modulated.

 The swarm dynamics of PSO have been

mathematically analyzed in several papers since its

inception. Ozcan and Mohan [3,4] analyzed the dynamics of

the PSO by assuming constant values of inertia weight and

acceleration coefficients, and by solving the relevant

recurrence relation in time for a single particle. The same

assumptions were made by Clerc and Kennedy [5], who

analysed the dynamics of a single particle on basis of the

state-space representation of its velocity and position. Jiang

et al. [6] applied stochastic techniques to derive the

conditions of convergence for a particle swarm, where the

inertia weight and acceleration coefficients were not

assumed constant, but were treated as random variables with

uniform distribution.

In this paper, we analyze the dynamics of a particle and

show how the addition of a mobility factor promotes fast

convergence and prevents premature convergence. We

apply the mathematics of linear recurrence relations to

analyze the time-behavior of a particle and calculate the

particular solution. From the formulation of the particular

solution, we show how the particles are prevented from

converging at false optima.

2. Inertia-adaptive PSO Algorithm

A. The Classical PSO Algorithm

The classical PSO starts with the random initialization

of a population of candidate solutions (particles) over the

fitness landscape. However, unlike other evolutionary

computing techniques, PSO uses no direct recombination of

genetic material between individuals during the search.

Rather it works depending on the social behavior of the

particles in the swarm. Therefore, it finds the global best

solution by simply adjusting the trajectory of each

individual towards its own best position and toward the best

particle of the entire swarm at each time-step (generation).

In a D-dimensional search space, the position vector of

the i-th particle is given by),.......,,(,2,1, Diiii xxxX =
�

and

velocity of the i-th particle is given by

),.......,,(,2,1, Diiii vvvV =
�

. Positions and velocities are

adjusted and the objective function to be optimized)(iXf
�

is evaluated with the new coordinates at each time-step. The

velocity and position update equations for the d-th

dimension of the i-th particle in the swarm may be

represented as:

)(**

)(**

1,,22

1,,,111,,,,

−

−−

−+

−+=

tdid

tdiditditdi

xgbestrandC

xpbestrandCvv

(1) ,,1,,,, tditditdi vxx += −

 where 1rand and 2rand are random positive numbers

uniformly distributed in (0,1) and are drawn anew for each

dimension of each particle. pbest is the personal best

solution found so far by an individual particle while

gbest represents the fittest particle found so far by the entire

community. The first term in the velocity updating formula

is referred to as the ‘cognitive part’. The last term of the

same formula is interpreted as the ‘social part’, which

represents how an individual particle is influenced by the

other members of its society. C1 and C2 are called

acceleration coefficients and they determine the relative

influences of the cognitive and social parts on the velocity

of the particle. The particle’s velocity is clamped to a

maximum value T
DvvvV],...,,[max,2max,1max,max =

�

. If in d-th

dimension, div , exceeds dvmax, specified by the user, then

the velocity of that dimension is assigned to

ddi vvsign max,, *)(, where sign(x) is the triple-valued signum

function.

B. Modifications to the Classical PSO Algorithm

Premature convergence occurs when the positions of

the most of the particles of the swarm stop changing over

successive iterations although the global optimum remains

undiscovered. This may happen if the swarm uses a small

inertia weight [7] or a constriction coefficient [5]. From the

basic equations of PSO, we see that if div , is small and in

addition to that didi xpbest ,, − and did xgbest ,− are small

enough, div , cannot attain a large value in the upcoming

generations. That would mean a loss of exploration power

and may occur even at an early stage of the search process,

when the particle itself is the global best causing

didi xpbest ,, − and did xgbest ,− to be zero. div , gets

damped quickly with the ratioω . Also the swarm suffers

from loss of diversity in later generations if pbest and

gbest are close enough [8]. The first of these modifications

involves modulation of the inertia factor ω according to

distance of the particles of a particular generation from the

global best. The value of ω for each particle is given by:

 







−=

dist

dist i

max_
1.0ωω , (2)

where)1,5.0(0 rand=ω , disti is the current Euclidean

distance of i-th particle from the global best i. e.

2
1

1

2
,)(














−= ∑

=

D

d

didi xgbestdist (3)

and max_dist is the maximum distance of a particle from

the global best in that generation i.e.

)(maxargdistmax_ i
i

dist= (4)

 This modulation of the inertia factor ensures that in

case of particles that have moved away from the global best,

the effect of attraction towards global best will predominate.

Premature convergence is a bane of the PSO and in later

stages the particles tend to get stuck in local minima,

especially in case of multi-modal fitness landscapes and

several real life problems. To ensure that the particle has

mobility in the later stages, the position update equation is

modified as follows:

)1(,,1,,,, tditditdi vxx +−= −ρ (5)

where ρ is a uniformly distributed random number in the

range (-0.25, 0.25). From now on, we shall refer to this new

algorithm as IAPSO (Inertia-adaptive PSO).

3. Mathematical Model of IAPSO

A. Analysis of the Dynamics of a Particle

In this Section, we show mathematically how the

inclusion of a momentum factor ρ in the position update

equation helps us to tune the rate of convergence of the

PSO. Thus by varying ρ , we can achieve a desired level of

convergence. From the same mathematical analysis we go

on to prove that premature convergence is discouraged in

the new algorithm, thus giving the particles mobility even at

later stages of convergence. For simplicity, we assume that

only one particle is moving in a one-dimensional space. The

analysis is done in discrete time domain. The velocity of

the particle at a time instant '' t is denoted by tv and the

cartesian coordinates of the position is denoted by .tx In a

discrete time domain, the position update equation

involving tv and .tx is:

tt

ttt

xgbestpbestv

xgbestxpbestvtv

)()(.

)()(.)1(

2121

21

φφφφω

φφω

+−++=

−+−+=+
 (6)

where ω is the inertia factor and 1φ and 2φ are the

acceleration coefficients which can be lumped into a single

coefficient .21 φφφ += We assume that ω , 1φ and 2φ are

constant throughout the entire time for which the analysis is

made. pbest denotes locally best position of the particle and

gbest denotes its globally best position found so far. We

further assume that pbest and gbest do not change with

time. This enables us to determine how a particle converges

towards static optimal positions. We can rewrite equation

(6) as follows:

 (7)

21

21

1

 where

][.

φφ

φφ

φω

+

+
=

−+=+

gbestpbest
p

xpvv ttt

The position update equation of a particle is:

11 ++ +′= ttt vxx ρ

where factor. momentum theis ; 1 ρρρ −=′ This factor is

also assumed to be constant throughout.

We now introduce another state variable ty where

.tt xpy −= Since the local and globally best positions do

not change with time, p is also constant with time. We now

substitute ty in place of)(txp − in the velocity update

equation to obtain:

ttt yvv φω +=+1 (8)

We now carry out the same substitution in the position
update equation.

)1()(

)(

))((

)(

1

1

1

1

ρωφρ

ωφρ

φωφρ

φωφρ

′−+−−′=⇒

++−′=−⇒

++−−′=−⇒

++−′=

+

+

+

+

pvyy

vyypyp

pvypyp

pvxx

ttt

tttt

ttt

ttt

 (9)

We introduce the shift operator E in our analysis, so that

E tv = 1+tv . Similarly E 1+= tt xx . The velocity and position

update equations, rewritten using the shift operator are:

)1()(

ttt

ttt

yvEv

pvyEy

φω

ρωφρ

+=

′−+−−′=
(10), (11)

Our next task is to combine equations (10) and (11) into a

single recurrence relation in tv .

Now, ttt yvEv φω += ttt EyEvvE φω +=⇒ 2

Also,)1()(ρωφρ ′−+−−′= pvyEy ttt

)1()(

)1()(

)1()(

)1())((

)1()(

2

2

ρφωρωρφ

ρφρωφρω

ρφωφωφρωφρω

ρφωφωφρω

ρφωφφρφω

′−=′+−′−+⇒

′−+′−−′+=

′−+−+′−−′+=

′−+−−−′+=

′−+−−′+=∴

pvEvvE

pvEvEv

pvvvEvEv

pvvEvEv

pvyEvvE

ttt

ttt

ttttt

tttt

tttt

This is the linear recurrence relation to be solved. It has

constant coefficients. Similar to the procedure for solving a

differential equation we find the:

1. complementary function)(tc by solving:

 0))((2 =′+−′−+ tvEE ωρωρφ (12)

2. particular solution (P.S) by finding:

)1(
)(

1
2

ρφ
ωρωρφ

′−
′+−′−+

p
EE

B. Solution of the Recurrence Relation

It is the complementary function, which describes the

behavior of the system (unstable, stable, oscillatory). If the

complementary function converges to an infinitesimally

small value with time, then the particular solution gives the

ultimate location of the particle.

The solution of equation (12) is:

2

4)()(2 ωρφωρφωρ ′−−+′±−+′
=E

We define the roots of the equation as 21 and ee .

2

4)()(

2

4)()(

2

2

2

1

ωρφωρφωρ

ωρφωρφωρ

′−−+′−−+′
=

′−−+′+−+′
=

e

e

Depending on the nature of the roots, three classes of

solutions are possible.

Class 1: The discriminant D is zero, i.e.

ωρφωρ ′=−+′ 4)(2 (13)

Then, ωρ
φωρ

′=
−+′

==
2

21 ee , and the

complementary function is :

)(tc =
t

etcc 121)(+ where 21 and cc are arbitrary constants.

Thus to obtain critically damped motion of the particle, only

two values of ρ ′ are permissible, obtained by solving

equation (13). By tuning ρ ′ appropriately, we can set the

motion to critical damping. Also we have to ensure

10 <′< ωρ for the solved values of ρ ′ .

Class 2: The discriminant D is positive i.e.

ωρφωρ ′>−+′ 4)(2

Then distinct. and real are and 21 ee

Then tt ecectc 2211)(+= where 21 and cc are arbitrary

constants. The C.F converges iff 1 and 1 21 << ee .

Class 3: The discriminant D is negative, i.e.

ωρφωρ ′<−+′ 4)(2

Then e1 and e2 are complex conjugate solutions. Then

Suppose βαβα ieie −=+= 21 and where

2

φωρ
α

−+′
= and

2

)(4 2φωρωρ
β

−+′−′
=

The complementary function)(tc is given by

)]sin()cos([21 θθ tctcr t + where the values of

bygiven are and θr 22 βα +=r
α

β
θ 1-tan and = .

c1 and c2 are arbitrary constants. Thus the particle ‘surfs’ on

a foundation of sine waves in this case. The period of

oscillation is given by:

}1,....,2,1{;
2

−∈= tk
t

k
p

π
θ . For convergence we require

11 1 22 <′⇒<+⇒< ωρβαr

Thus in this case if the parameter ρ ′ is introduced, r reduces

further, thus increasing the speed of convergence.

Thus, in both classes 1 and 2 of solutions we note that the

convergence rate is entirely dependent on the parameter ρ ′ .

The particular solution is computed as:

)1)(1(

)1(

)1(
)1)(()1(

1

)1(
)(

1

2

2

ωρφ

ρφ

ρφ
ωρωρφ

ρφ
ωρωρφ

−′−+

′−
=

′−
′++∆−′−++∆

=

′−
′+−′−+

p

p

p
EE

Hence, the complete solution of the velocity is given by:

)(c += tvt
)1)(1(

)1(

ωρφ

ρφ

−′−+

′−p
, (14)

where)(c t is given by the three different classes of solution

described earlier. The complementary function

)(tc converges towards zero for ∞→t , subject to certain

conditions in ρ ′ ,ω and φ . Then

∞→
−′−+

′−
→ t

p
vt as

)1)(1(

)1(

ωρφ

ρφ
. Hence the particular

solution defines only the target, and not the manner in

which vt reaches the target value

C. Prevention of Premature Convergence

We begin our analysis from the time instant when vt has

converged and reached its constant value. The constant

value of vt is now denoted by 0v

where =0v
)1)(1(

)1(

ωρφ

ρφ

−′−+

′−p
. Now from equation (14) we

have

)1(c1 ++=+ tvt
)1)(1(

)1(

ωρφ

ρφ

−′−+

′−p
 (15)

Substituting the derived relations for vt and vt+1 in equation

(14) we get :

)()()1(00 tyvtcvtc φωω ++=++

)1)(1(

)1)(1(
lim

0)(lim)1(lim)1(
1

lim

lim)(lim)1(lim

t
0

00

ωρφ

ωρ

ω
φ

φωω

−′−+

−′−
=⇒

==+−=⇒

++=++⇒

∞→

∞→∞→∞→

∞→∞→∞→

p
y

tctcvy

yvtcvtc

t
t

t
t

t

t
ttt

∵

Thus the final value of yt is a finite real number.For the

classical PSO, ρ ′ =1 always, so yt becomes zero with time.

This corresponds to the case of premature convergence. In

the actual IAPSO, ρ ′ is not kept constant but is initialized

to a random value at every generation, and so ty does not

remain constant. In this way, premature convergence is

avoided.

D. Tuning of the Parameter ρ ′

In the previous section we have shown that we can

select appropriate values of the parameter ρ ′ to control the

speed of convergence. Our selection depends on the values

of φω and as well. We have seen that to ensure

convergence, the discriminant D of the auxiliary equation

(12) should be less than or equal to zero. Moreover the

condition 1<′ωρ should be ensured to maintain

convergence. We first solve the equation D=0 and the

inequations D>0 and D<0. Rewriting the equation in terms

of φωρ and ,′ we get:

0)()(2

0222

04)(

22

222

2

=−++′−′⇒

=′−−′−++′⇒

=′−−+′

φωφωρρ

φρωφωρφωρ

ωρφωρ

The roots of the above equation are
2

2
2

1)(and)(φωρφωρ +=′−=′ . The solution of

D>0 is given by 21 or ρρρρ ′>′′<′ . Similarly the solution

of D<0 is given by 21 ρρρ ′<′<′ .

We now calculate values of ρ ′ for constant values of

00 and φφωω == . For class 1 of solutions, we require

() () theosubject t, or
2

00

2

00 φωρφωρ +=′−=′

condition 10 <′ωρ . To analyze class 2 of solutions, we

require () or)(
2

00
2

00 φωρφωρ −<′+>′ and

1),max(21 <ee . By analyzing e1 and e2 as functions of ρ ′

we can show that the latter condition is satisfied when:

1) ,max(000000 <−+ φωωφωω (16)

For class 3 of solutions we require

() 2
00

2

00)(φωρφω +<′<− and 10 <′ωρ .

We now apply our analysis to the case

0.4 and 765.0 00 == φω (the values have been taken from

the standard literature on PSO).

 a b

 c d

Figure 1. The time-behavior of velocity and position of the particle for various values of ρ ′ , when 0.4 and 765.0 00 == φω : (a)

ρ ′ =-0.2665 (critical convergence) (b) ρ ′ =-0.275 (fast convergence) (c) ρ ′ =-0.29 (slow convergence) and (d) ρ ′ =-0.35 (non-

convergence)

For class 1 of solutions, the value of ρ ′ is given by ρ ′ =-

0.2665 (the other solution does not ensure convergence).

For class 2 of solutions the range of ρ ′ is

30718.0or 2665.0 −<′−>′ ρρ . No convergence is possible

for any value of ρ ′ in this case, since condition (16) is not

satisfied. For class 3 of solutions we

require .2665.030718.0 −<′<− ρ The time-behavior of the

position and velocity of the particle for various values of ρ ′

are shown in Fig 1. From the figure, it can be seen that

various rates of convergence can be obtained by

appropriately adjusting the value of ρ ′ .

4. Experimental Setup

A. Benchmark functions

We have used eight well-known benchmarks [9] to evaluate

the performance of the proposed algorithm. The benchmark

functions are: f1 : Rosenbrock’s function ; f2 : Rastrigin’s

function ; f3 : Ackley’s function ; f4 : Weierstrass function ;

f5 : Griewank’s function ; f6 : Generalized Penalized

function 1 (GP-1). Here the proposed algorithm has been

compared with the classical PSO algorithm and four of its

significant variants over these benchmark functions. In Table

1, D represents the number of dimensions (we used D = 30

and 60). An asymmetrical initialization procedure has been

used here following the work reported in [10].

Table 1. Average and the standard deviation of the best-of-run solution for the 50 independent runs and the success rate

tested on f1 to f6

B. Algorithms Compared

Simulations were carried out to obtain a comparative

performance analysis of the proposed IAPSO algorithm

with respect to: (a) the basic PSO (BPSO) with constant

inertia weight (b) PSO-TVIW [11] (c) HPSO-TVAC [12]

(d) MPSO-TVAC [12], and (e) CLPSO [13]. In all the

algorithms, for a particular trial, the same initial positions

and velocities were set for all particles, so as to minimize

the effect of randomness during comparison.

C. Simulation Strategy

To judge the accuracy of different PSO-variants, we

first let each of them run until the number of function

evaluations (FEs) exceed a given upper limit (which was

fixed at 10
6
) and record the final best fitness achieved by

each algorithm. We employed the best set of parameters for

all the considered algorithms, as found in the relevant

literatures. We have set the population size equal to 40

particles. For IAPSO, we set 00.221 == CC and

initialized ρ to a random value in the range (-0.25,0.25).

For all particles, ρ is changed with every iteration. The

value of ω is set according to equation (1) where 0ω is

assigned a random value in the range (0.5,1). All the

algorithms discussed here have been developed from scratch

in Visual C++ on a Pentium IV, 2.3 GHz PC, with 1024 KB

cache and 2 GB of main memory in Windows XP

environment.

5.Results and Discussions

The mean and the standard deviation (within

parentheses) of the best-of-run solution for 50 independent

runs of each of the six algorithms are presented in Table 1.

Since all the algorithms start with the same initial

population over each problem instance, we used paired t-

tests to compare the means of the results produced by best

and the second best algorithms. The 10-th column of Table

1 reports the statistical significance level of the difference of

the means of best two algorithms.

Mean Best Value

(Standard Deviation)

Function

D

FEs

BPSO PSO-TVIW
MPSO-

TVAC

HPSO-

TVAC
CLPSO IAPSO

Statistical

Significance

Level

30 5×105 2.063e+004

(6.78e+004)

2.196e+002

(8.45e+001)

6.8372e+001

(4.75e+00)

7.332e+001

(7.13e+001)

5.670e+001

(5.16e+001)

2.8676e+001

(2.68e-001)

-

f1

60
1×106 4.1336e+003

(3.69e+003)

7.0931e+002

(6.22e+001)

3.8274e+002

(2.378e+001)

1.9451e+002

(3.94e+002)

1.177e+002

(8.69e+001)

4.3567e+001

(1.06e-001)

-

30 5×105 5.6352e+001

(3.54e+001)

4.2455e+001

(1.96e+001)

9.5278e+001

(9.72e+00)

3.9426e+001

(3.10e+001)

1.3107e-001

(3.24e-001)

1.5713e-053

(2.07e-060)

+

f2

60
1×106 1.2245e+002

(5.18e+001)

1.1283e+000

(4.46e-01)

3.7649e+001

(4.27e+00)

6.8186e+001

(4.13e+001)

8.4291e-001

(1.53e+000)

0.00e+000

(0.00e+000)

+

30 5×105 4.73e+000

(3.03e+000)

4.0364e-001

(2.81e-003)

7.94504e-002

(8.03e-003)

3.6982e+000

(1.95e-001)

2.7445e-003

(1.73e-003)

5.8924e-016

(0.00e+000)

+

f3

60
1×106 8.5297e+000

(5.23e+000)

1.0222e+000

(1.82e-001)

5.2724e-001

(4.63e-007)

5.56e+000

(3.08e+000)

2.4501e-002

(1.33e-002)

2.9655e-015

(5.68e+020)

+

30 5×105 2.04e+001

(1.43e+001)

3.9716e-001

(6.39e-002)

2.8962e-001

(2.25e-002)

7.6843e+000

(7.30e+000)

3.9812e-008

(1.95e-009)

3.0300-013

(1.60e-020)

+

f4

60
1×106 1.79e+001

(7.31e+000)

3.0835e+001

(4.73e-001)

5.2184e-001

(2.94e-004)

1.3732e+001

(5.63e+000)

1.1403e-006

(3.26e-003)

3.9304e-010

(1.54e-009)

-

30
5×105 9.5294e-001

(2.42e-001)

2.0621e-002

(5.58e-03)

9.8035e-001

(6.80e-03)

1.8235e-002

(2.93e-002)

1.1435e-003

(1.74e-003)
0.00e+000

(0.00e+000)

+

f5
60

1×106 4.7364e+000

(1.77e+001)

4.0832e-001

(5.42e-002)

6.76249e-001

(4.27e-001)

1.2065e-002

(2.14e-003)

6.9734e-003

(4.05e-003)

0.00e+000

(0.00e+000)

+

30
5×105 5.9242e+000

(4.88e+000)

1.0045e+001

(4.32e-001)

4.8605e+001

(1.08e+000)

4.5170e+000

(3.82e+000)

9.0408e-001

(1.77e-005)
1.1740e-001

(9.73e-004)

+

f6

60

1×106 2.64e+001

(1.57e+001)

1.0400e+001

(8.54e-001)

5.81493e-001

(1.08e-002)

1.3531e+001

(7.77e+000)

1.8425e-001

(1.31e-001)

5.1963e-001

(2.61e-001)

-

a. Rosenbrock’s function (f1)

b. Weierstrass function (f4)

Figure 2. Performance for functions f1 and f4

Note that here ‘+’ indicates the t value of 49 degrees of

freedom is significant at a 0.05 level of significance by two-

tailed test, ‘-’ means the difference of means is not

statistically significant.

In Figure 2, we have graphically presented the rate of

convergence of all algorithms over two test functions.

6. Conclusions

This work has presented a new, efficient PSO algorithm,

which self-adapts the inertia weight over different fitness

landscapes. The algorithm has been subjected to a

mathematical analysis to show how the inclusion of a

mobility factor improves convergence speed and prevents

premature convergence. The new method has been

compared against the basic PSO and four well-known PSO-

variants, using a six-function test suite. It has been shown to

outperform its nearest competitor in a statistically

meaningful way for majority of the test cases. Since all the

algorithms start with the same initial population, difference

in their performances must be due to the difference in their

internal operators and parameter values.

References

[1] Kennedy, J., Eberhart, R. C: (1995) Particle swarm

optimization, In Proceedings of IEEE International

conference on Neural Networks. 1942-1948.

[2] Kennedy, J., Eberhart, R. C., and Shi, Y.: (2001)

Swarm Intelligence. Morgan Kaufman, San

Francisco, USA.

[3] E. Ozcan, C.K. Mohan, Analysis of a simple

particle swarm optimization system, in: Intelligent

Engineering Systems through Artificial Neural

Networks, 1998, pp. 253–258.

[4] E. Ozcan, C.K. Mohan, Particle swarm

optimization: surfing the waves, in: Proc. IEEE

Congress on Evolutionary Computation (CEC

1999), Washington, DC, USA, 1999, pp. 1939–

1944.

[5] Clerc, M. and Kennedy, J.: (2002) The particle

swarm - explosion, stability, and convergence in a

multidimensional complex space, In IEEE

Transactions on Evolutionary Computation 6(1):

58-73.

[6] Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic

convergence analysis and parameter selection of

the standard particle swarm optimization

algorithm, Information Processing Letters, 102,

2007, 8-16

[7] R. C. Eberhart, Y. Shi.: Particle swarm

optimization: Developments, applications and

resources, In Proceedings of IEEE International

Conference on Evolutionary Computation, vol. 1

(2001), 81-86.

[8] Xie, X., F, Zhang, W., J., and Yang, Z, L. Adaptive

particle swarm optimization on individual level, In

Proceedings of International Conference on Signal

Processing (2002), 1215-1218.

[9] Das, S., Konar, A., and Chakraborty, U. K.: (2005)

Improving Particle Swarm Optimization with

Differentially Perturbed Velocity, in ACM-

SIGEVO Proceedings of Genetic and Evolutionary

Computation Conference (GECCO-2005),

Washington DC.

[10] Angeline, P. J.: (1998) Evolutionary optimization

versus particle swarm optimization: Philosophy

and the performance difference, Lecture Notes in

Computer Science, vol. 1447, Evolutionary

Programming VII, 84-89.

[11] Shi, Y. and Eberhart, R. C.: (1999) Empirical

Study of particle swarm optimization, In

Proceedings of IEEE International Conference

Evolutionary Computation, Vol. 3 , 101-106.

[12] Ratnaweera, A., Halgamuge, K. S., and Watson, H.

C.: (2004) Self organizing hierarchical particle

swarm optimizer with time-varying acceleration

coefficients, In IEEE Transactions on Evolutionary

Computation 8(3): 240-254.

[13] Liang, J. J., Qin, A. K., Suganthan, P. N., and

Baskar, S.: (2006) Comprehensive learning particle

swarm optimizer for global optimization of

multimodal functions, IEEE Transactions on

Evolutionary Computation, Vol. 10, No. 3, pp.

281-295, 2006.

