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Abstract- Particle Swarm Optimization (PSO) has 

recently emerged as a nature inspired algorithm for real 

parameter optimization. This article describes a method 

for improving the final accuracy and the convergence 

speed of PSO by adding a new coefficient to the position 

updating equation and modulating the inertia weight. 

This work also mathematically analyzes the effect of this 

modification on the PSO algorithm. The new algorithm 

has been shown to be statistically significantly better 

than four recent variants of PSO on a six-functions test-

suite.  

 

1.Introduction 

 
       The concept of particle swarms, although initially 

introduced for simulating human social behavior, has 

become very popular these days as an efficient means of 

intelligent search and optimization. The Particle Swarm 

Optimization (PSO) [1, 2], as it is called now, does not 

require any gradient information of the function to be 

optimized, uses only primitive mathematical operators and 

is conceptually very simple. PSO emulates swarming 

behavior of insects, and also draws inspiration from the 

boid’s method of Craig Reynolds and socio-cognition [2]. 

Particles are conceptual entities, which search through a 

multi-dimensional search space. At any particular instant, 

each particle has a position and velocity. The position 

vector of a particle with respect to the origin of the search 

space represents a trial solution to the search problem.  

PSO is however not free from false and/or premature 

convergence, especially over multimodal fitness landscapes. 

In this article, we describe a new variant of the basic PSO, 

which improves the performance of the algorithm. A 

momentum factor has been added to the position updating 

equation of the classical PSO, which gives greater mobility 

to the particles even when their velocities become very low 

due to false convergence to some local minima. Also, the 

inertia weight has been modulated. 

       The swarm dynamics of PSO have been 

mathematically analyzed in several papers since its 

inception. Ozcan and Mohan [3,4] analyzed the dynamics of 

the PSO by assuming constant values of inertia weight and 

acceleration coefficients, and by solving the relevant 

recurrence relation in time for a single particle. The same 

assumptions were made by Clerc and Kennedy [5], who 

analysed the dynamics of a single particle on basis of the 

state-space representation of its velocity and position. Jiang 

et al. [6] applied stochastic techniques to derive the 

conditions of convergence for a particle swarm, where the 

inertia weight and acceleration coefficients were not 

assumed constant, but were treated as random variables with 

uniform distribution.   

In this paper, we analyze the dynamics of a particle and 

show how the addition of a mobility factor promotes fast 

convergence and prevents premature convergence. We 

apply the mathematics of linear recurrence relations to 

analyze the time-behavior of a particle and calculate the 

particular solution. From the formulation of the particular 

solution, we show how the particles are prevented from 

converging at false optima.  

 

 

2. Inertia-adaptive PSO Algorithm 

 

A.  The Classical PSO Algorithm 

The classical PSO starts with the random initialization 

of a population of candidate solutions (particles) over the 

fitness landscape. However, unlike other evolutionary 

computing techniques, PSO uses no direct recombination of 

genetic material between individuals during the search. 

Rather it works depending on the social behavior of the 

particles in the swarm. Therefore, it finds the global best 

solution by simply adjusting the trajectory of each 

individual towards its own best position and toward the best 

particle of the entire swarm at each time-step (generation). 

In a D-dimensional search space, the position vector of 

the i-th particle is given by ),.......,,( ,2,1, Diiii xxxX =
�

and 

velocity of the i-th particle is given by 

),.......,,( ,2,1, Diiii vvvV =
�

. Positions and velocities are 

adjusted and the objective function to be optimized )( iXf
�

 

is evaluated with the new coordinates at each time-step. The 

velocity and position update equations for the d-th 

dimension of the  i-th particle in the swarm may be 

represented as: 
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 where 1rand and 2rand are random positive numbers 

uniformly distributed in (0,1) and are drawn anew for each 

dimension of each particle. pbest  is the personal best 

solution found so far by an individual particle while 

gbest represents the fittest particle found so far by the entire 

community. The first term in the velocity updating formula 

is referred to as the ‘cognitive part’. The last term of the 

same formula is interpreted as the ‘social part’, which 

represents how an individual particle is influenced by the 

other members of its society. C1 and C2 are called 

acceleration coefficients and they determine the relative 

influences of the cognitive and social parts on the velocity 

of the particle. The particle’s velocity is clamped to a 

maximum value T
DvvvV ],...,,[ max,2max,1max,max =

�

. If in d-th 

dimension, div ,  exceeds dvmax, specified by the user, then 

the velocity of that dimension is assigned to 

ddi vvsign max,, *)( , where sign(x) is the triple-valued signum 

function.  

 

B. Modifications to the Classical PSO Algorithm 

 

Premature convergence occurs when the positions of 

the most of the particles of the swarm stop changing over 

successive iterations although the global optimum remains 

undiscovered. This may happen if the swarm uses a small 

inertia weight [7] or a constriction coefficient [5]. From the 

basic equations of PSO, we see that if div , is small and in 

addition to that didi xpbest ,, − and did xgbest ,−  are small 

enough, div ,  cannot attain a large value in the upcoming 

generations. That would mean a loss of exploration power 

and may occur even at an early stage of the search process, 

when the particle itself is the global best causing 

didi xpbest ,, −  and did xgbest ,−  to be zero. div ,  gets 

damped quickly with the ratioω . Also the swarm suffers 

from loss of diversity in later generations if pbest  and 

gbest  are close enough [8]. The first of these modifications 

involves modulation of the inertia factor ω according to 

distance of the particles of a particular generation from the 

global best. The value of ω for each particle is given by:   
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where )1,5.0(0 rand=ω , disti  is the current Euclidean 

distance of i-th particle from the global best i. e.  
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and max_dist is the maximum distance of a particle from 

the global best in that generation i.e. 

           )(maxargdistmax_ i
i

dist=                                       (4) 

         This modulation of the inertia factor ensures that in 

case of particles that have moved away from the global best, 

the effect of attraction towards global best will predominate.  

Premature convergence is a bane of the PSO and in later 

stages the particles tend to get stuck in local minima, 

especially in case of multi-modal fitness landscapes and 

several real life problems. To ensure that the particle has 

mobility in the later stages, the position update equation is 

modified as follows: 

                                       )1( ,,1,,,, tditditdi vxx +−= −ρ        (5)           

where ρ is a uniformly distributed random number in the 

range (-0.25, 0.25). From now on, we shall refer to this new 

algorithm as IAPSO (Inertia-adaptive PSO). 

 

3. Mathematical Model of IAPSO 

A. Analysis of the Dynamics of a Particle 

In this Section, we show mathematically how the 

inclusion of a momentum factor ρ in the position update 

equation helps us to tune the rate of convergence of the 

PSO. Thus by varying ρ , we can achieve a desired level of 

convergence. From the same mathematical analysis we go 

on to prove that premature convergence is discouraged in 

the new algorithm, thus giving the particles mobility even at 

later stages of convergence.  For simplicity, we assume that 

only one particle is moving in a one-dimensional space. The 

analysis is done in discrete time domain.  The velocity of 

the particle at a time instant '' t is denoted by tv and the 

cartesian coordinates of the position is denoted by .tx  In a 

discrete time domain, the position update equation 

involving tv and .tx is:  

tt
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where ω is the inertia factor and 1φ and 2φ are the 

acceleration coefficients which can be lumped into a single 

coefficient .21 φφφ += We assume that ω , 1φ  and 2φ  are 

constant throughout the entire time for which the analysis is 

made. pbest denotes locally best position of the particle and 

gbest denotes its globally best position found so far. We 

further assume that pbest and gbest do not change with 

time. This enables us to determine how a particle converges 

towards static optimal positions. We can rewrite equation 

(6) as follows: 

                                                                                            (7) 
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The position update equation of a particle is: 

11 ++ +′= ttt vxx ρ  

where factor. momentum  theis   ; 1 ρρρ −=′ This factor is 

also assumed to be constant throughout. 

We now introduce another state variable ty where 

.tt xpy −=  Since the local and globally best positions do 

not change with time, p is also constant with time. We now 

substitute ty in place of )( txp − in the velocity update 

equation to obtain: 

ttt yvv φω +=+1              (8) 

We now carry out the same substitution in the position 
update equation. 
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                                                                                            (9) 

We introduce the shift operator E in our analysis, so that 

E tv = 1+tv . Similarly E 1+= tt xx . The velocity and position 

update equations, rewritten using the shift operator are: 
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Our next task is to combine equations (10) and (11) into a 

single recurrence relation in tv .  

Now, ttt yvEv φω += ttt EyEvvE φω +=⇒ 2  

Also, )1()( ρωφρ ′−+−−′= pvyEy ttt
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This is the linear recurrence relation to be solved. It has 

constant coefficients. Similar to the procedure for solving a 

differential equation we find the: 

1. complementary function )(tc  by solving: 

 

      0))(( 2 =′+−′−+ tvEE ωρωρφ                   (12) 

2. particular solution (P.S) by finding: 
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B. Solution of the Recurrence Relation 

 

It is the complementary function, which describes the 

behavior of the system (unstable, stable, oscillatory). If the 

complementary function converges to an infinitesimally 

small value with time, then the particular solution gives the 

ultimate location of the particle. 

The solution of equation (12) is: 

2

4)()( 2 ωρφωρφωρ ′−−+′±−+′
=E  

We define the roots of the equation as 21  and ee . 
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Depending on the nature of the roots, three classes of 

solutions are possible. 

Class 1: The discriminant D is zero, i.e. 

ωρφωρ ′=−+′ 4)( 2                                                       (13) 

Then, ωρ
φωρ

′=
−+′

==
2

21 ee , and the 

complementary function is : 

)(tc = 
t

etcc 121 )( + where 21  and cc are arbitrary constants. 

Thus to obtain critically damped motion of the particle, only 

two values of ρ ′ are permissible, obtained by solving 

equation (13). By tuning ρ ′ appropriately, we can set the 

motion to critical damping. Also we have to ensure 

10 <′< ωρ  for the solved values of ρ ′ .   

Class 2: The discriminant D is positive i.e. 

ωρφωρ ′>−+′ 4)( 2  

Then distinct. and real are  and 21 ee  

Then tt ecectc 2211)( +=  where 21  and cc  are arbitrary 

constants. The C.F converges iff 1  and  1 21 << ee . 

 

Class 3: The discriminant D is negative, i.e. 

ωρφωρ ′<−+′ 4)( 2  

Then e1 and e2 are complex conjugate solutions. Then  

Suppose βαβα ieie −=+= 21  and  where 

2

φωρ
α

−+′
=  and 

2
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The complementary function )(tc  is given by 

 )]sin()cos([ 21 θθ tctcr t + where the values of 

bygiven  are  and θr  22 βα +=r  
α

β
θ 1-tan  and = .     

c1 and c2 are arbitrary constants. Thus the particle ‘surfs’ on 



a foundation of sine waves in this case. The period of 

oscillation is given by: 

}1,....,2,1{;
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k
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π
θ  . For convergence we require 

11  1 22 <′⇒<+⇒< ωρβαr  

Thus in this case if the parameter ρ ′ is introduced, r reduces 

further, thus increasing the speed of convergence. 

Thus, in both classes 1 and 2 of solutions we note that the 

convergence rate is entirely dependent on the parameter ρ ′ . 

The particular solution is computed as: 
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Hence, the complete solution of the velocity is given by: 

  )(c += tvt
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where )(c t is given by the three different classes of solution 

described earlier. The complementary function 

)(tc converges towards zero for ∞→t , subject to certain 

conditions in ρ ′ ,ω and φ  . Then 

∞→
−′−+

′−
→ t

p
vt   as 

)1)(1(

)1(

ωρφ

ρφ
. Hence the particular 

solution defines only the target, and not the manner in 

which vt reaches the target value 

 

C. Prevention of Premature Convergence 

 

We begin our analysis from the time instant when vt has 

converged and reached its constant value. The constant 

value of vt is now denoted by 0v  

where =0v
)1)(1(

)1(

ωρφ

ρφ

−′−+

′−p
. Now from equation (14) we 

have 
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Substituting the derived relations for vt and vt+1 in equation 

(14) we get : 
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Thus the final value of yt is a finite real number.For the 

classical PSO, ρ ′ =1 always, so yt becomes zero with time. 

This corresponds to the case of premature convergence. In 

the actual IAPSO, ρ ′ is not kept constant but is initialized 

to a random value at every generation, and so ty does not 

remain constant. In this way, premature convergence is 

avoided. 

 

D.   Tuning of the Parameter ρ ′  

 

In the previous section we have shown that we can 

select appropriate values of the parameter ρ ′ to control the 

speed of convergence. Our selection depends on the values 

of φω  and  as well. We have seen that to ensure 

convergence, the discriminant D of the auxiliary equation  

(12) should be less than or equal to zero. Moreover the 

condition 1<′ωρ  should be ensured to maintain 

convergence. We first solve the equation D=0 and the 

inequations D>0 and D<0. Rewriting the equation in terms 

of φωρ  and ,′  we get: 
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The roots of the above equation are 
2

2
2

1 )( and )( φωρφωρ +=′−=′ . The solution of  

D>0 is given by 21 or  ρρρρ ′>′′<′ . Similarly the solution 

of D<0 is given by 21 ρρρ ′<′<′ . 

We now calculate values of ρ ′  for constant values of 

00  and φφωω == . For class 1 of solutions, we require 

( ) ( )    theosubject  t,  or  
2

00

2

00 φωρφωρ +=′−=′  

condition 10 <′ωρ . To analyze class 2 of solutions, we 

require ( )  or  )(
2

00
2

00 φωρφωρ −<′+>′ and

1),max( 21 <ee . By analyzing e1 and e2 as functions of ρ ′  

we can show that the latter condition is satisfied when: 

1) ,max( 000000 <−+ φωωφωω                             (16) 

For class 3 of solutions we require 

( ) 2
00

2

00 )( φωρφω +<′<−  and 10 <′ωρ .  

We now apply our analysis to the case 

0.4 and 765.0 00 == φω (the values have been taken from 

the standard literature on PSO). 
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Figure 1.  The time-behavior of velocity and position of the particle for various values of ρ ′ , when 0.4 and 765.0 00 == φω :  (a) 

ρ ′ =-0.2665 (critical convergence) (b) ρ ′ =-0.275 (fast convergence) (c) ρ ′ =-0.29 (slow convergence) and (d) ρ ′ =-0.35 (non-

convergence) 

 

For class 1 of solutions, the value of ρ ′  is given by ρ ′ =-

0.2665 (the other solution does not ensure convergence). 

For class 2 of solutions the range of ρ ′  is 

30718.0or  2665.0 −<′−>′ ρρ . No convergence is possible 

for any value of ρ ′  in this case, since condition (16) is not 

satisfied. For class 3 of solutions we 

require .2665.030718.0 −<′<− ρ The time-behavior of the 

position and velocity of the particle for various values of ρ ′  

are shown in Fig 1.  From the figure, it can be seen that 

various rates of convergence can be obtained by 

appropriately adjusting the value of ρ ′ . 

 

 

4. Experimental Setup 

A.   Benchmark functions 

We have used eight well-known benchmarks [9] to evaluate 

the performance of the proposed algorithm. The benchmark 

functions are: f1 : Rosenbrock’s function ; f2 : Rastrigin’s 

function ; f3 : Ackley’s function ;  f4 : Weierstrass function ; 

f5 : Griewank’s function ; f6 : Generalized Penalized 

function 1 (GP-1). Here the proposed algorithm has been 

compared with the classical PSO algorithm and four of its 

significant variants over these benchmark functions. In Table 

1, D represents the number of dimensions (we used D = 30 

and 60). An asymmetrical initialization procedure has been 

used here following the work reported in [10]. 

 



Table 1. Average and the standard deviation of the best-of-run solution for the 50 independent runs and the success rate 

tested on f1 to f6 

 

B. Algorithms Compared 

Simulations were carried out to obtain a comparative 

performance analysis of the proposed IAPSO algorithm 

with respect to: (a) the basic PSO (BPSO) with constant 

inertia weight (b) PSO-TVIW [11] (c) HPSO-TVAC [12] 

(d) MPSO-TVAC [12], and (e) CLPSO [13]. In all the 

algorithms, for a particular trial, the same initial positions 

and velocities were set for all particles, so as to minimize 

the effect of randomness during comparison.  

 

C.    Simulation Strategy 

 

To judge the accuracy of different PSO-variants, we 

first let each of them run until the number of function 

evaluations (FEs) exceed a given upper limit (which was 

fixed at 10
6
) and record the final best fitness achieved by 

each algorithm. We employed the best set of parameters for 

all the considered algorithms, as found in the relevant 

literatures. We have set the population size equal to 40 

particles. For IAPSO, we set 00.221 == CC and 

initialized ρ to a random value in the range (-0.25,0.25). 

For all particles, ρ  is changed with every iteration. The 

value of ω is set according to equation (1) where 0ω is 

assigned a random value in the range (0.5,1). All the 

algorithms discussed here have been developed from scratch 

in Visual C++ on a Pentium IV, 2.3 GHz PC, with 1024 KB 

cache and 2 GB of main memory in Windows XP 

environment. 

 

5.Results and Discussions 
 

The mean and the standard deviation (within 

parentheses) of the best-of-run solution for 50 independent 

runs of each of the six algorithms are presented in Table 1. 

Since all the algorithms start with the same initial 

population over each problem instance, we used paired t-

tests to compare the means of the results produced by best 

and the second best algorithms. The 10-th column of Table 

1 reports the statistical significance level of the difference of 

the means of best two algorithms.   

Mean Best Value 

(Standard Deviation) 

 

Function 

 

D 

 

 

FEs 

BPSO PSO-TVIW 
MPSO-

TVAC 

HPSO-   

TVAC 
CLPSO IAPSO 

 

Statistical 

Significance 

Level 

30 5×105 2.063e+004  

(6.78e+004) 

2.196e+002 

(8.45e+001) 

6.8372e+001 

(4.75e+00) 

7.332e+001  

(7.13e+001) 

5.670e+001  

(5.16e+001) 

2.8676e+001 

(2.68e-001) 

-  

f1 

60 
1×106 4.1336e+003  

(3.69e+003) 

7.0931e+002 

(6.22e+001) 

3.8274e+002 

(2.378e+001) 

1.9451e+002  

(3.94e+002) 

1.177e+002  

(8.69e+001) 

4.3567e+001 

(1.06e-001) 

- 

30 5×105 5.6352e+001  

(3.54e+001) 

4.2455e+001 

(1.96e+001) 

9.5278e+001 

(9.72e+00) 

3.9426e+001  

(3.10e+001) 

1.3107e-001  

(3.24e-001) 

1.5713e-053 

(2.07e-060) 

+  

f2 

60 
1×106 1.2245e+002  

(5.18e+001) 

1.1283e+000 

(4.46e-01) 

3.7649e+001 

(4.27e+00) 

6.8186e+001  

(4.13e+001) 

8.4291e-001  

(1.53e+000) 

0.00e+000 

(0.00e+000) 

+ 

30 5×105 4.73e+000  

(3.03e+000) 

4.0364e-001 

(2.81e-003) 

7.94504e-002 

(8.03e-003) 

3.6982e+000  

(1.95e-001) 

2.7445e-003  

(1.73e-003) 

5.8924e-016 

(0.00e+000) 

+  

f3 

60 
1×106 8.5297e+000  

(5.23e+000) 

1.0222e+000 

(1.82e-001) 

5.2724e-001 

(4.63e-007) 

5.56e+000  

(3.08e+000) 

2.4501e-002  

(1.33e-002) 

2.9655e-015 

(5.68e+020) 

+ 

30 5×105 2.04e+001  

(1.43e+001) 

3.9716e-001 

(6.39e-002) 

2.8962e-001 

(2.25e-002) 

7.6843e+000  

(7.30e+000) 

3.9812e-008  

(1.95e-009) 

3.0300-013 

(1.60e-020) 

+  

f4 

60 
1×106 1.79e+001  

(7.31e+000) 

3.0835e+001 

(4.73e-001) 

5.2184e-001 

(2.94e-004) 

1.3732e+001  

(5.63e+000) 

1.1403e-006  

(3.26e-003) 

3.9304e-010 

(1.54e-009) 

- 

30 
5×105 9.5294e-001  

(2.42e-001) 

2.0621e-002 

(5.58e-03) 

9.8035e-001 

(6.80e-03) 

1.8235e-002  

(2.93e-002) 

1.1435e-003  

(1.74e-003) 
0.00e+000 

(0.00e+000) 

+ 

 

f5 
60 

1×106 4.7364e+000  

(1.77e+001) 

4.0832e-001 

(5.42e-002) 

6.76249e-001 

(4.27e-001) 

1.2065e-002  

(2.14e-003) 

6.9734e-003  

(4.05e-003) 

0.00e+000 

(0.00e+000) 

+ 

30 
5×105 5.9242e+000  

(4.88e+000) 

1.0045e+001 

(4.32e-001) 

4.8605e+001 

(1.08e+000) 

4.5170e+000  

(3.82e+000) 

9.0408e-001  

(1.77e-005) 
1.1740e-001 

(9.73e-004) 

+ 

f6 

 
60 

1×106 2.64e+001     

(1.57e+001) 

1.0400e+001 

(8.54e-001) 

5.81493e-001 

(1.08e-002) 

1.3531e+001 

(7.77e+000) 

1.8425e-001 

(1.31e-001) 

5.1963e-001 

(2.61e-001) 

- 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Rosenbrock’s function (f1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Weierstrass function  (f4) 

 
Figure 2. Performance for functions f1 and f4 

 

 

  



Note that here ‘+’ indicates the t value of 49 degrees of 

freedom is significant at a 0.05 level of significance by two-

tailed test, ‘-’ means the difference of means is not 

statistically significant. 

In Figure 2, we have graphically presented the rate of 

convergence of all algorithms over two test functions. 

 
6. Conclusions 
 

This work has presented a new, efficient PSO algorithm, 

which self-adapts the inertia weight over different fitness 

landscapes. The algorithm has been subjected to a 

mathematical analysis to show how the inclusion of a 

mobility factor improves convergence speed and prevents 

premature convergence. The new method has been 

compared against the basic PSO and four well-known PSO-

variants, using a six-function test suite. It has been shown to 

outperform its nearest competitor in a statistically 

meaningful way for majority of the test cases.  Since all the 

algorithms start with the same initial population, difference 

in their performances must be due to the difference in their 

internal operators and parameter values.  
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