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Babeş-Bolyai University, Cluj-Napoca, 3400, Romania
2IITA Professorship Program,
School of Computer Science and Engineering
Chung-Ang University, Seoul 156-756, Korea
cgrosan@cs.ubbcluj.ro, ajith.abraham@ieee.org

Summary. This Chapter summarizes some of the well known stigmergic
computational techniques inspired by nature, mainly for optimization problems
developed by mimicking social insects’ behavior. Some facts about social insects
namely ants, bees and termites are presented with an emphasis on how they could
interact and self organize for solving real world problems. We focused on ant
colony optimization algorithm, bees behavior inspired algorithms, particle swarm
optimization algorithm and bacterial foraging algorithm.

1.1 Introduction

Nature has inspired researchers in many different ways. Airplanes have been
designed based on the structures of birds’ wings. Robots have been designed in order
to imitate the movements of insects. Resistant materials have been synthesized based
on spider webs. The fascinating role that insects play in our lives is obvious. It is
interesting how these tiny insects can find the shortest path for instance between two
locations without any knowledge about distance, linearity, etc.

Biologists studied the behavior of social insects for a long time. For decades,
entomologists have known that insect colonies are capable of complex collective
action, even though individuals adhere to straightforward routines. When foraging,
for example, workers appear to march to a drumbeat that dictates when to turn and
when to lay down pheromone to guide other workers. As simple as these rules are,
they create an effective dragnet to haul in food as efficiently as possible. In this
manner, ants have been solving problems very skillfully every day of their lives for
the last 100 million years [120].

After millions of years of evolution all these species have developed incredible
solutions for a wide range of problems. Biologically inspired systems have been
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gaining importance and it is clear that many other ideas can be developed by taking
advantage of the examples that nature offers.

Some social systems in nature can present an intelligent collective behavior
although they are composed by simple individuals with limited capabilities. The
intelligent solutions to problems naturally emerge from the self-organization and
indirect communication of these individuals. These systems provide important
techniques that can be used in the development of distributed artificial intelligent
systems [7].

Rest of this Chapter is organized as follows. Section 1.2 introduces Entomology
and Stigmergy followed by some factual contents about social insects in Section
1.3. Some nature inspired computational algorithms are depicted in Section 1.4 and
conclusions are provided in Section 1.5.

1.2 Entomology and Stigmergy

Entomology is the scientific study of insects. Hogue [79] noted that Entomology has
long been concerned with survival (economic or applied Entomology) and scientific
study (academic Entomology), but the branch of investigation that addresses
the influence of insects (and other terrestrial Arthropoda, including Arachnids,
Myriapods, etc) in literature, language, music, the arts, interpretive history, religion,
and recreation has only recently been recognized as a distinct field. This is referred
to ascultural entomology.

Over the last fifty years biologists have unraveled many of the mysteries
surrounding social insects, and the last decade has seen an explosion of research
in the fields variously referred to ascollective intelligence, swarm intelligenceand
emergent behavior. Even more recently the swarm paradigm has been applied to a
broader range of studies, opening up new ways of thinking about theoretical Biology,
Economics and Philosophy.

The South African Scientist - Eugène Marais (1872-1936) - is considered as one
of the first scientists who paid attention to the behavior of social insects. His work
on termites led him to a series of stunning discoveries. He developed a fresh and
radically different view of how a termite colony works, and indeed of what a termite
colony is. In 1923 he began writing a series of popular articles on termites for the
Afrikaans press and in 1925 he published a major article summing up his work in the
Afrikaans magazineDie Huisgenoot. In 1925 Marais published an original research
article and some conclusions about the white ant. In 1927, Maurice Maeterlinck
(1862-1949), a Nobel Prize winner, lifted half of Marais’s work and published it
without any acknowledgement, as the book “The Life of the White Ant” [94]. This
plagiarization may well have been a major factor in Marais’s final collapse. Plagued
for many years by ill-health and an addiction to morphine, he took his own life in
March 1936. Marais’s book “The Soul of the White ant” was published posthumous
in 1937 [110].

Konrad Lorenz (1903-1989) is widely credited as being the father of Ethology,
the scientific study of animal behavior, with his early work on imprinting and
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instinctive behavior. Although Marais had created a detailed document on termites,
he was unaware of the mechanics of termite communication. How is it that a group
of tiny, short-sighted, simple individuals are able to create the grand termite mounds,
sometimes as high as six meters, familiar to inhabitants of dry countries? The answer
to this question was first documented by the French Biologist, Pierre-Paul Grassé in
his 1959 study of termites [76]. Grassé noted that termites tended to follow very
simple rules when constructing their nests.

• First, they simply move around at random, dropping pellets of chewed earth and
saliva on any slightly elevated patches of ground they encounter. Soon small
heaps of moist earth form.

• These heaps of salivated earth encourage the termites to concentrate their pellet-
dropping activity and soon the biggest heaps develop into columns which will
continue to be built until a certain height, dependent on the species, is reached.

• Finally, if a column has been built close enough to other columns, one other
behavior kicks in: the termites will climb each column and start building
diagonally towards the neighboring columns.

Obviously, this does not tell the whole story but a key concept in the collective
intelligence of social insects is revealed: the termites’ actions are not coordinated
from start to finish by any kind of purposive plan, but rather rely on how the termite’s
world appears at any given moment. The termite does not need global knowledge or
any more memory than is necessary to complete the sub-task in hand; it just needs
to invoke a simple behavior dependent on the state of its immediate environment.
Grasśe termed thisstigmergy, meaning ’incite to work’, and the process has been
observed not just in termites, but also in ants, bees, and wasps in a wide range of
activities. Writing about termites, he offered a more general definition of stigmergy
- “the stimulation of the workers by the very performances they have achieved” [80].

Grasśe quoted “Self-Organization in social insects often requires interactions
among insects: such interactions can be direct or indirect. Direct interactions are
the ”obvious” interactions: antennation, trophallaxis (food or liquid exchange),
mandibular contact, visual contact, chemical contact (the odor of nearby nestmates),
etc. Indirect interactions are more subtle: two individuals interact indirectly when
one of them modifies the environment and the other responds to the new environment
at a later time. Such an interaction is an example of stigmergy”.

Studying nest reconstruction in termites, Grassé showed that it doesn’t rely on
direct communication between individuals. The nest structure itself coordinates the
workers’ tasks, essentially through local pheromone concentrations. The state of the
nest structure triggers some behaviors, which then modify the nest structure and
trigger new behaviors until the construction is over [70].

According to Gordon [70], the application of stigmergy to computation is
surprisingly straightforward. Instead of applying complex algorithms to static
datasets, through studying social insects we can see that simple algorithms can often
do just as well when allowed to make systematic changes to the data in question
[70]. A famous example of stigmergy is pheromonal communication, whereby ants
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engaging in certain activities leave a chemical trail which is then followed by their
colleagues.

This ability of ants to collectively find the shortest path to the best food
source was studied by Jean-Louis Deneubourg ([36]-[44], [71]-[75], [104]-[108]).
He demonstrated how the Argentine ant was able to successfully choose the shortest
between the two paths to a food source. Deneubourg was initially interested in self
organization, a concept which until then had been the fare of chemists and physicists
seeking to explain the natural order occurring in physical structures such as sand
dunes and animal patterns ([1]-[4], [5], [6], [8], [14]-[19], [26], [62], [84], [111],
[133]-[135], [138]). Deneubourg saw the potential for this concept, which by 1989
had turned into a sizeable research project amongst Physicists, to be applied to
Biology. In his experiments, a group of ants are offered two branches leading to
the same food source, one longer than the other. Initially, there is a 50% chance of an
ant choosing either branch, but gradually more and more journeys are completed on
the shorter branch than the longer one, causing a denser pheromone trail to be laid.
This consequently tips the balance and the ants begin to concentrate on the shorter
route, discarding the longer one. This is precisely the mechanism underpinning an ant
colony’s ability to efficiently exploit food sources in sequential order: strong trails
will be established to the nearest source first, then when it is depleted and the ants
lose interest, the trails leading to the next nearest source will build up [70].

1.3 Facts About Social Insects

Among all social insects, the ants, social bees, social wasps, and termites, dominate
the environment in most terrestrial habitats.

1.3.1 Facts about Ants

Shortly, while talking about ants, we can use Charlotte Sleigh’s words: “Ants are
legion: at present there are 11,006 species of ants known; they live everywhere in the
world except the polar icecaps; and the combined weight of the ant population has
been estimated to make up half the mass of all insects alive today” [123].

Like all insects, ants have six legs. Each leg has three joints. The legs of the ant
are very strong so they can run very quickly. If a man could run as fast for his size
as an ant can, he could run as fast as a racehorse. Ants can lift 20 times their own
body weight. An ant brain has about 250,000 brain cells. Mushroom shaped brain
appendages have function similar to the gray-matter of human brains. A human brain
has 10,000 million so a colony of 40,000 ants has collectively the same size brain as
a human [137].

The average life expectancy of an ant is 45-60 days. Ants use their antennae not
only for touch, but also for their sense of smell. The head of the ant has a pair of
large, strong jaws. The jaws open and shut sideways like a pair of scissors. Adult
ants cannot chew and swallow solid food. Instead they swallow the juice which they
squeeze from pieces of food. They throw away the dry part that is left over. The
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ant has two eyes; each eye is made of many smaller eyes called compound eyes. The
abdomen of the ant contains two stomachs. One stomach holds the food for itself and
second stomach is for food to be shared with other ants. Like all insects, the outside
of their body is covered with a hard amour this is called the exoskeleton. Ants have
four distinct growing stages, the egg, larva, pupa and the adult. Biologists classify
ants as a special group of wasps - (Hymenoptera Formicidae). There are over 10000
known species of ants. Each ant colony has at least one or more queens. The job of
the queen is to lay eggs which the worker ants look after. Worker ants are sterile; they
look for food, look after the young, and defend the nest from unwanted visitors. Ants
are clean and tidy insects. Some worker ants are given the job of taking the rubbish
from the nest and putting it outside in a special rubbish dump. Each colony of ants
has its own smell. In this way, intruders can be recognized immediately. Many ants
such as the common Red species have a sting which they use to defend their nest.
The common Black Ants and Wood Ants have no sting, but they can squirt a spray of
formic acid. Some birds put ants in their feathers because the ants squirt formic acid
which gets rid of the parasites. The Slave-Maker Ant (Polyergus Rufescens) raids the
nests of other ants and steals their pupae. When these new ants hatch they work as
slaves within the colony [81].

When searching for food, ants initially explore the area surrounding their nest in a
random manner. While moving, ants leave a chemical pheromone trail on the ground.
Ants are guided by pheromone smell. Ants tend to choose the paths marked by the
strongest pheromone concentration . When an ant finds a food source, it evaluates the
quantity and the quality of the food and carries some of it back to the nest. During the
return trip, the quantity of pheromone that an ant leaves on the ground may depend
on the quantity and quality of the food. The pheromone trails will guide other ants to
the food source.

The indirect communication between the ants via pheromone trails enables them
to find shortest paths between their nest and food sources as illustrated in Figure 1.1.

Fig. 1.1. The ants taking the shortest path can perform a greater number of trips between
nest and food; implicitly the pheromone trail will be more than the one released by the ants
following the longest path.
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According to Truscio [137] both ants and humans share these endeavors:

• livestock farming: herd aphids and ”milk” them for nectar-like food
• cultivation: growing underground gardens for food
• childcare: feeding young and providing intensive nursery care
• education: teaching younger ants the tricks of the trade
• climate control: maintaining a strict 77o F for developing ants
• career specialization: changing and learning new careers
• civic duties: responding with massive group projects
• armed forces: raising an army of specialized soldier ants
• security: warding off other ants, insects, and animals
• earth movers: move at least as much soil as earthworms
• social planning: maintain ratio of workers, soldiers, and reproductives
• engineering: tunnel from 2 directions and meet exactly midway
• communications: complex tactile, chemical communication system
• flood control: incorporate water traps to keep out rain
• limited free will: inter-relationships more symbiotic than coercive

1.3.2 Facts about Bees

There are two well known classes of bees:European beesandAfricanized bees. A
comparison between the two classes of bees is given in Table 1.1. The ancestors
of the Africanized bee live throughout Africa, south of the Sahara Desert. African
bees were accidentally introduced into the wild in South and North America during
1956. Brazilian scientists were attempting to create a new hybrid bee in the hopes
of creating improved honey production. The Africanized bee escaped and began to
attack the honey bees.

European Honey Bees Africanized Bees
Pollinate flowers and crops
Calmed by smoke
Swarm only when crowded

More aggressive
Attack in larger groups
Make less honey
Make less wax
Hate high pitched sounds
Swarm more often

Table 1.1.African and European honey bees: a comparison

Drones usually live five to ten weeks. Workers usually live about fifty days and
all the workers are females. Queens live an average about three years and there is
only one surviving queen bee in each colony. She mates over with many drones
(male bees), and may lay 1500 eggs per day. The queen releases a pheromone that
identifies her as the queen. When the beehive is overpopulated, Africanized Bees
swarm to a local area to start a new hive. Too much warm or cold weather may cause
swarming. Only one queen bee will rule. When the two queens reach the adult stage,
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they battle to the death for control of the hive. The cycle of swarming continues until
the hive is worn out. An extremely aggressive Africanized bee colony may attack
any ’threat’ within 100 ft. and pursue for up to one-fourth a mile.

Africanized bees react to disturbance around the hive. They can stay angry for
days after being disturbed. If one bee stings, it releases an alarm that smells like
bananas. This pheromone causes the other bees to become agitated and sting. The
Africanized bee, like the honey bee, dies when it stings. The tiny barbs on the stinger
stick in the victim. When the bee tries to fly away, it rips its abdomen and eventually
dies [82].

It is said that there is a relationship between bees and Fibonacci numbers.
Fibonacci described the sequence ”encoded in the ancestry of a male bee.” This turns
out to be the Fibonacci sequence. The following facts are considered:

• If an egg is laid by a single female, it hatches a male.
• If, however, the egg is fertilized by a male, it hatches a female.
• Thus, a male bee will always have one parent, and a female bee will have two.

If one traces the ancestry of this male bee (1 bee), he has 1 female parent (1
bee). This female had 2 parents, a male and a female (2 bees). The female had two
parents, a male and a female, and the male had one female (3 bees). Those two
females each had two parents, and the male had one (5 bees). If one continues this
sequence, it gives a perfectly accurate depiction of the Fibonacci sequence. However,
this statement is mostly theoretical. In reality, some ancestors of a particular bee will
always be sisters or brothers, thus breaking the lineage of distinct parents [147].

1.3.3 Facts about Termites

Termites have been on Earth for over 50 million years. Some of their fossils date
back to the Oligocene, Eocene, and Miocene periods. They have evolved into many
different species. As of 1995 there were approximately 2,753 valid names of termite
species in 285 genera around the world. The word ’termites’ comes from the Latin
word ’Tarmes’. The Latin word was given to a small worm that makes holes in wood.

TheM. bellicosustermites live in colonies but really they are more like families.
Of some thirty or so insect orders, termites are the only one in which all species
are categorized as highly social. They are very unique due to the fact that their
colonies are based on monogamy. As far as entomologists know, they are the most
sophisticated families ever to evolve in the universe. The termite colony has three
separate stages: juvenile, adult, and senile. The survival of their species depends
on their caste system. The smallest in size, yet most numerous of the castes are
the workers. They are all completely blind, wingless, and sexually immature. Their
job is to feed and groom all of the dependent castes. They also dig tunnels, locate
food and water, maintain colony atmospheric homeostasis, and build and repair the
nest. The soldiers’ job is to basically defend the colony from any unwanted animals.
Soldiers have larger heads that are longer and wider than that of the workers because
it contains more muscles. The soldiers cannot feed themselves and must rely on the
workers for this.
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During swarming season the young males and females that are leaving the nest
to make new colonies are exposed to birds, bats, reptiles and amphibians. One of the
most dangerous predators of theM. bellicosusare driver ants. If their path crosses
a mound of theM. bellicosusthey will invade it by entering at the top where the
building material is soft. Once inside the ants find little resistance since they have
better eye sight and greater agility. It is rare that the colony is completely destroyed
because some of the worker termites hide in the royal chamber. These termites
continue the colony and before long life has returned to usual [82].

1.4 Nature Inspired Algorithms

Inspired by Naturebecame now a well known syntagma. Nature is offering models
and humans are exploiting any interesting idea from this.

1.4.1 Ant colonies inspired algorithms

Ant colony optimization (ACO) was introduced around 1991-1992 by M. Dorigo
and colleagues as a novel nature-inspired metaheuristic for the solution of hard
combinatorial optimization problems [45], [50]-[54], [56]. Dorigo [56] was intrigued
to learn how these virtually brainless creatures could create highly sophisticated
messaging systems and build extremely complex architectural structures. Although
an individual ant is quite small (measuring only 2.2 to 2.6 mm in length) and wanders
quite aimlessly in isolation, a group of many ants exhibits extraordinarily intelligent
behavior, recognizable to humans as meaningful pathways to food sources. This
emergent intelligence can be summarized in the pseudocode below [83]:

1. At the outset of the foraging process, the ants move more or less randomly –
this “random” movement is actually executed such that a considerable amount
of surface area is covered, emanating outward from the nest.

2. If it is not carrying food, the ant “deposits” a nest pheromone and will prefer to
walk in the direction of sensed food pheromone.

3. If it is carrying food, the ant deposits a food pheromone and will prefer to walk
in the direction of sensed nest pheromone.

4. The ant will transport food from the source to the nest.

As a pheromone “trail” becomes stronger, the more ants follow it, leaving more
pheromone along the way, which makes more ants follow it, and so on.

ACO is implemented as a team of intelligent agents which simulate the
ants behavior, walking around the graph representing the problem to solve using
mechanisms of cooperation and adaptation. ACO algorithm requires to define the
following [57]:

• The problem needs to be represented appropriately, which would allow the ants
to incrementally update the solutions through the use of a probabilistic transition
rules, based on the amount of pheromone in the trail and other problem specific
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knowledge. It is also important to enforce a strategy to construct only valid
solutions corresponding to the problem definition.

• A problem-dependent heuristic functionη that measures the quality of
components that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the pheromone
valueτ.

• A probabilistic transition rule based on the value of the heuristic functionη and
the pheromone valueτ that is used to iteratively construct a solution.

According to Dorigo et al. [49], the main steps of the ACO algorithm are given
below:

1. pheromone trail initialization
2. solution construction using pheromone trail

Each ant constructs a complete solution to the problem according to a
probabilistic

3. state transition rule
The state transition rule depends mainly on the state of the pheromone [136]

4. pheromone trail update.

A global pheromone updating rule is applied in two phases. First, an evaporation
phase where a fraction of the pheromone evaporates, and then a reinforcement phase
where each ant deposits an amount of pheromone which is proportional to the fitness
of its solution [136]. This process is iterated until a termination condition is reached.
ACO was first introduced using the Traveling Salesman Problem (TSP) [?], [29]-
[32], [46]-[49], [66], [67], [126]-[128], [130], [21]. Starting from its start node, an
ant iteratively moves from one node to another. When being at a node, an ant chooses
to go to a unvisited node at timet with a probability given by

pk
i, j(t) =

[τi, j(t)]α[ηi, j(t)]β

∑l∈Nk
i
[τi, j(t)]α[ηi, j(t)]β

j ∈ Nk
i (1.1)

whereNk
i is the feasible neighborhood of theantk, that is, the set of cities which

antk has not yet visited;τi, j(t) is the pheromone value on the edge(i, j) at the timet,
α is the weight of pheromone;ηi, j(t) is a priori available heuristic information on the
edge(i, j) at the timet, β is the weight of heuristic information. Two parametersα
andβ determine the relative influence of pheromone trail and heuristic information.
τi, j(t) is determined by

τi, j(t) = ρτi, j(t−1)+
n

∑
k=1

∆τk
i, j(t) ∀(i, j) (1.2)

whereρ is the pheromone trail evaporation rate (0 < ρ < 1), n is the number of
ants,Q is a constant for pheromone updating. A generalized version of the pseudo-
code for the ACO algorithm with reference to the TSP is illustrated in Algorithm
1.1.
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Algorithm 1.1 Ant Colony Optimization Algorithm
01. Initialize the number of antsn, and other parameters.
02. While (the end criterion is not met) do
03. t = t +1;
04. Fork= 1 ton
05. antk is positioned on a starting node;
06. Form= 2 to problemsize
07. Choose the state to move into
08. according to the probabilistic transition rules;
09. Append the chosen move intotabuk(t) for theantk;
10. Nextm
11. Compute the lengthLk(t) of the tourTk(t) chosen by theantk;
12. Compute∆τi, j (t) for every edge (i, j) in Tk(t) according to Eq.(??);
13. Nextk
14. Update the trail pheromone intensity for every edge (i, j) according to Eq.(1.2);
15. Compare and update the best solution;
16. End While.

Other applications of the ACO algorithm include: sequential ordering problem
[68], quadratic assignment problem [95]-[99], [69], [129], [132], vehicle routing
problem [22]-[24], scheduling problems [33], [63], [65], [100], [10], [11],
graph coloring [34], partitioning problems [92], [93], timetabling [124], shortest
subsequence problem [101], constraint satisfaction problems [125], maximum clique
problem [20], edge-disjoint paths problem [9].

Perrotto and Lopez use ant colonies optimization for reconstruction of
phylogenetic trees, which are developed in order to help unveil the evolutionary
relationships among species, taking into account the Darwinian principle of the
natural evolution of species. That is, by analyzing a set of amino acid sequences
(or proteins) of different species, it can be determined how these species probably
have been derived during their evolution. A phylogenetic tree can be considered
as a binary tree, whose leaf nodes represent the species to be analyzed and inner
nodes the ancestral species from which the current species have evolved. Also,
phylogenetic trees may or may not have a root that indicates the oldest ancestor.
A tree is constructed using a fully connected graph and the problem is approached
similarly to the traveling salesman problem [109].

ACO was successfully applied for routing and road balancing problems.
Schoonderwoerd et al. [113]-[115] designed an ant based control system (ABC) was
designed to solve the load-balancing problem in circuit-switched networks [117],
[119].

One of the ramifications of the ABC system is the adaptation of Guérin’s
smart antsto solve the problems of routing and load-balancing in circuit-switched
networks by Bonabeau et al. [13], [77]. While an ant in ABC updates only the
entry corresponding to the source node in the pheromone table of each node it
passes, Bonabeau smart ants update the pheromone table at each node, all entries
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corresponding toeverynode they pass. Two other ramifications of the ABC system
are the work of Subramanian et al. [131] and Heusse et al. [78], [112].

Caro and Dorigo [27] proposed the AntNet algorithm, designed for routing in
packet-switched networks. Unlike traditional routing algorithms (such as OSPF and
RIP) which focused on minimal or shortest path routing, routing in AntNet was
carried out with the aim of optimizing the performance of the entire network. In
AntNet, routing was achieved by launching forward ants at regular intervals from
a source node to a destination node to discover a feasible low-cost path and by
backward ants that travels from to destination node to source node update pheromone
tables at each intermediate node [117].

ACO algorithms are also applied in the bioinformatics field for the problems
such as: protein folding [121], [122], to multiple sequence alignment [102], and to
the prediction of major histocompatibility complex (MHC) class II binders [85].

Sim and Sun [118]proposed aMultiple Ant Colony Optimization (MACO)
technique, in which more than one colony of ants are used to search optimal paths,
and each colony of ants deposits a different type of pheromone represented by a
different color.

1.4.2 Bees’ behavior inspired algorithms

Farooq et al. [61], [139]-[145] developed a bee inspired algorithm for routing
in telecommunication network. The work is inspired by the way these insects
communicate. He is also using “dance” quality of the bees, as illustrated in the book
The Dance Language and Orientation of Bees [64].

The worker bees in a honey bee colony are grouped as food-storer, scout and
forager. The food collection is organized by the colony by recruiting bees for
different jobs. The recruitment is managed by the forager bees which can perform
dances to communicate with their fellow bees inside the hive and recruit them. At
the entrance of the hive is an area called the dance-floor, where dancing takes place
[116]. Different types of dances have been identified:

• Waggle dance- is an advertisement for the food source of the dancer. Another
forager can leave her food source and watch out for a well advertised food source
[116]. A forager randomly follows dances of multiple recruiting foragers and
seems to respond randomly as well. Especially she does not compare several
dances. A dance does not seem to contain any information that helps to choose a
food source [143].

• Tremble dance- foragers are more likely to perform the tremble dance if they
have to wait long for a food-storer bee to unload their nectar after their arrival
at hive. Foragers perform the tremble dance on the dance-floor and in the brood
nest as well, whereas the waggle dance is limited to the dance-floor. So maybe
bees in the hive are addressed, too [143]. According to Seeley [116] worker bees
in the hive are ordered by the tremble dancers to give up their jobs and to unload
nectar.



12 Grosan and Abraham

Upon their return from a foraging trip, bees communicate the distance, direction,
and quality of a flower site to their fellow foragers by making waggle dances on a
dance floor inside the hive. By dancing zealously for a good foraging site they recruit
foragers for the site. In this way a good flower site is exploited, and the numbers of
foragers at this site are reinforced. A honey bee colony has many features that are
desirable in networks:

• efficient allocation of foraging force to multiple food sources;
• different types of foragers for each commodity;
• foragers evaluate the quality of food sources visited and then recruit optimum

number of foragers for their food source by dancing on a dance floor inside the
hive;

• no central control;
• foragers try to optimize the energetic efficiency of nectar collection and foragers

take decisions without any global knowledge of the environment.

For solving the routing problem [61] the following hypothesis are considered: if a
honey bee colony is able to adapt to countless changes inside the hive or outside in the
environment through simple individuals without any central control, then an agent
system based on similar principles should be able to adapt itself to an ever changing
network environment in a decentralized fashion with the help of simple agents who
rely only on local information. Problem is modeled as a honey bee colony and
as a population based multi-agent system, in which simple agents coordinate their
activities to solve the complex problem of the allocation of labor to multiple forage
sites in dynamic environments. The agents achieve this objective in a decentralized
fashion with the help of local information that they acquire while foraging. The
proposed algorithm for routing problem is calledBeeHiveand uses the following
principles of a honey bee colony [61]:

1. Each node in the network is considered as being a hive that consists of bee
agents. Each node periodically launches its bee agents to explore the network and
collect the routing information that provides the nodes visited with the partial
information on the state of the network. These bee agents can be considered
as scouts that explore and evaluate the quality of multiple paths between their
launching node and the nodes that they visit.

2. Bee agents provide to the nodes which they visit, with the information on the
propagation delay and queuing delay of the paths they explored. These lead to
their launching node from the visited nodes. One could consider the propagation
delay as distance information, and the queuing delay as a direction information
(please remember bee scouts also provide these parameters in their dances): this
reasoning is justified because a data packet is only diverted from the shortest path
to other alternate paths when large queuing delays exist on the shortest path.

3. A bee agent decides to provide its path information only if the quality of the path
traversed is above a threshold. The threshold is dependent on the number of hops
that a bee agent is allowed to take. Moreover, the agents model the quality of a
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path as a function of the propagation delay and the queuing delay of the path;
lower values of the parameters result in higher values for the quality parameter.

4. The majority of the bee agents in the BeeHive algorithm explore the network in
the vicinity of their launching node and very few explore distant part of the
network. The idea is borrowed from honey bee colony resulting in not only
reducing the overhead of collecting the routing information but also helping in
maintaining smaller/local routing tables.

5. We consider a routing table as a dance floor where the bee agents provide the
information about the quality of the paths they traversed. The routing table is
used for information exchange among bee agents, launched from the same node
but arriving at an intermediate node via different neighbors. This information
exchange helps in evaluating the overall quality of a node as it has multiple
pathways to a destination) for reaching a certain destination.

6. A nectar forager exploits the flower sites according to their quality while the
distance and direction to the sites is communicated to it through waggle dances
performed by fellow foragers on the dance floor. In our algorithm, we map
the quality of paths onto the quality of nodes for utilizing the bee principle.
Consequently, we formulate the quality of a node, for reaching a destination, as
a function of proportional quality of only those neighbors that possibly lie in the
path toward the destination.

Data packets are interpreted as foragers. Once they arrive at a node, they access
the information in the routing tables, stored by bee agents, about the quality of
different neighbors of the node for reaching their destinations. They select the next
neighbor toward the destination in a stochastic manner depending upon its goodness.
As a result, not all packets follow the best paths. This will help in maximizing the
system performance although a data packet may not follow the best path.

Craig [35] borrowed the following idea from bees colonies behavior and used it
for Internet Server Optimization: each colony must collect extra nectar during the
warm season to make and store enough honey – usually 20 to 50 kg – in order to
survive the winter. Efficient nectar collection is thus crucial for the colony survival.
It is inefficient, in general, for all of the colony’s foragers to collect from the same
flower patch. A large number of bees at one patch can “swamp out” the flowers’
capacity to generate nectar. On the other hand, some flower patches are richer or
more productive than others. To maximize nectar intake, the honey bee colony must
‘decide’ in some decentralized but intelligent fashion how many bees will forage at
each flower patch.

1.4.3 Particle swarm optimization algorithm

The Particle Swarm Optimization (PSO) model [58]-[60], [86]-[91] consists of a
swarm of particles, which are initialized with a population of random candidate
solutions. They move iteratively through thed-dimension problem space to search
the new solutions, where the fitness,f , can be calculated as the certain qualities
measure. Each particle has a position represented by a position-vectorxi (i is the
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index of the particle), and a velocity represented by a velocity-vectorvi . Each particle
remembers its own best position so far in a vectorx#

i , and its j-th dimensional value
is x#

i j . The best position-vector among the swarm so far is then stored in a vectorx∗,
and its j-th dimensional value isx∗j . During the iteration timet, the update of the
velocity from the previous velocity to the new velocity is determined by Eq.(1.3).
The new position is then determined by the sum of the previous position and the new
velocity by Eq.(1.4).

vi j (t +1) = wvi j (t)+c1r1(x#
i j (t)−xi j (t))+c2r2(x∗j (t)−xi j (t)). (1.3)

xi j (t +1) = xi j (t)+vi j (t +1). (1.4)

wherew is called as the inertia factor,r1 andr2 are the random numbers, which are
used to maintain the diversity of the population, and are uniformly distributed in the
interval [0,1] for the j-th dimension of thei-th particle.c1 is a positive constant,
called as coefficient of the self-recognition component,c2 is a positive constant,
called as coefficient of the social component. From Eq.(1.3), a particle decides where
to move next, considering its own experience, which is the memory of its best past
position, and the experience of its most successful particle in the swarm. In the
particle swarm model, the particle searches the solutions in the problem space with a
range[−s,s] (If the range is not symmetrical, it can be translated to the corresponding
symmetrical range.) In order to guide the particles effectively in the search space,
the maximum moving distance during one iteration must be clamped in between the
maximum velocity[−vmax,vmax] given in Eq.(1.5):

vi j = sign(vi j )min(
∣∣vi j

∣∣ ,vmax). (1.5)

The value ofvmax is p× s, with 0.1≤ p≤ 1.0 and is usually chosen to bes, i.e.
p = 1. The pseudo-code for particle swarm optimization algorithm is illustrated in
Algorithm 1.2.

The end criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated after a
fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: the optimization process is
terminated after some fixed number of iterations without any improvement.

• Minimum objective function error: the error between the obtained objective
function value and the best fitness value is less than a pre-fixed anticipated
threshold.

1.4.4 Bacteria foraging algorithm

Since selection behavior of bacteria tends to eliminate animals with poor foraging
strategies and favor the propagation of genes of those animals that have successful
foraging strategies, they can be applied to have an optimal solution through methods
for locating, handling, and ingesting food. After many generations, a foraging animal
takes actions to maximize the energy obtained per unit time spent foraging. That is,
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Algorithm 1.2 Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarmn, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t +1;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1( f (x∗(t−1)), f (x1(t)), f (x2(t)), · · · , f (xi(t)), · · · , f (xn(t)));
07. Fori= 1 ton
08. x#

i (t) = argminn
i=1( f (x#

i (t−1)), f (xi(t));
09. For j = 1 toDimension
10. Update thej-th dimension value ofxi andvi
10. according to Eqs.(1.3), (1.4), (1.5);
12. Next j
13. Nexti
14. End While.

poor foraging strategies are either eliminated or shaped into good ones. To perform
social foraging an animal needs communication capabilities and it gains advantages
that can exploit essentially the sensing capabilities of the group, so that the group
can gang-up on larger prey, individuals can obtain protection from predators while in
a group, and in a certain sense the group can forage a type of collective intelligence
[103].

Escherichia Coli (E. Coli) normally lives inside the intestines, where it helps to
body break down and digest the food. Its behavior and movement comes from a
set of six rigid spinning (100-200 r.p.s) flagella, each driven as a biological motor.
An E. coli bacterium alternates through running and tumbling. When the flagella
rotate clockwise (counterclockwise), they operate as propellers and hence an E. Coli
may run or tumble. Passino et al. [103] has modeled the chemotactic actions of the
bacteria as follows:

• If in neutral medium, alternate tumbles and runs it is considered as search.
• If swimming up a nutrient gradient (or out of noxious substances), swim longer

(climb up nutrient gradient or down noxious gradient)then it is considered as
seeking increasingly favorable environments.

• If swimming down a nutrient gradient (or up noxious substance gradient), then
search is considered as avoiding unfavorable environments.

In this way, it can climb up nutrient hills and at the same time avoid
noxious substances. E. coli occasionally engages in a conjugation that affects the
characteristics of a population of bacteria. There are many types of taxes that are
used by bacteria. For instance, some bacteria are attracted to oxygen (aerotaxis), light
(phototaxis), temperature (thermotaxis), or magnetic lines of flux (magnetotaxis).
Some bacteria can change their shape and number of flagella based on the medium
to reconfigure so as to ensure efficient foraging in a variety of media. Bacteria can
form intricate stable spatio-temporal patterns in certain semisolid nutrient substances
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and they can eat radially their way through a medium if placed together initially at
its center. Moreover, under certain conditions, they will secrete cell-to-cell attractant
signals so that they will group and protect each other.

1.5 Conclusions and Some Potential Areas for Exploration

This chapter reviewed some of the well known nature inspired stigmergic
computational models which has evolved during the last few decades. We presented
some facts about social insects namely ants, bees and termites and how they could
interact and self organize for solving real world problems. We focused on ant
colony optimization algorithm, bees behavior inspired algorithm, particle swarm
optimization algorithm and bacterial foraging algorithm.

The subject of copying, imitating, and learning from biology was coined
Biomimeticsby Otto H. Schmitt in 1969 [28]. This field is increasingly involved
with emerging subjects of science and engineering and it represents the studies and
imitation of nature’s methods, designs and processes. Nature, through billions of
years of trial and error, has produced effective solutions to innumerable complex
real-world problems. Even though there are several computational nature inspired
models, there is still a lot of room more research, at least in the form of finding some
collaborations and interactions between the existing systems as well as developing
new systems by borrowing ideas from nature. Butler [25] suggests some potential
research areas:

1. Spiders spin silk that is stronger than synthetic substances developed by man but
require only insects as inputs.

2. Diatoms, microscopic phytoplankton responsible for a quarter of all the
photosynthesis on Earth, make glass using silicon dissolved in seawater.

3. Abalone, a type of shellfish, produces a crack-resistant shell twice as tough
as ceramic from calcium found in seawater using a process known as bio-
mineralization.

4. Trees ”turn sunlight, water, and air into cellulose, a sugar stiffer and stronger
than nylon, and bind it into wood, a natural composite with a higher bending
strength and stiffness than concrete or steel,” as noted by Paul Hawken, Amory
and L. Hunter Lovins inNatural Capitalism.

5. Countless plants generate compounds that fight off infection from fungi, insects,
and other pests.
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