
Fuzzy Classification by Evolutionary Algorithms

Pavel Krömer, Jan Platoš, Václav Snášel, Ajith Abraham

Faculty of Electrical Engineering and Computer Science

VSB-Technical University of Ostrava

17. listopadu 12, Ostrava-Poruba, Czech Republic

Email: {pavel.kromer,jan.platos, vaclav.snasel}@vsb.cz; ajith.abraham@ieee.org

Abstract—Fuzzy sets and fuzzy logic can be used for efficient
data classification by fuzzy rules and fuzzy classifiers. This paper
presents an application of genetic programming to the evolution
of fuzzy classifiers based on extended Boolean queries. Extended
Boolean queries are well known concept in the area of fuzzy
information retrieval. An extended Boolean query represents a
complex soft search expression that defines a fuzzy set on the
collection of searched documents. We interpret the data mining
task as a fuzzy information retrieval problem and we apply a
proven method for query induction from data to find useful fuzzy
classifiers. The ability of the genetic programming to evolve useful
fuzzy classifiers is demonstrated on two use cases in which we
detect faulty products in a product processing plant and discover
intrusions in a computer network.

Index Terms—fuzzy sets, data mining, evolutionary computing

I. INTRODUCTION

Fuzzy sets and fuzzy logic provide means for soft classifi-

cation of data. In contrast to crisp classification, which states

crisp decisions about data samples, fuzzy classification allows

us to analyze the data samples in a more sensitive way [1].

Fuzzy decision trees and if-then rules are examples of efficient,

transparent, and easily interpretable fuzzy classifiers [1], [2].

Genetic programming is a powerful machine learning tech-

nique from the wide family of evolutionary algorithms. In

contrast to the traditional evolutionary algorithms, it can

be used to evolve complex hierarchical tree structures and

symbolic expressions. It has been used to evolve Lisp S-

expressions, mathematical functions, various symbolic expres-

sions including crisp and fuzzy decision trees, and recently

to infer search queries from relevance ranked documents in a

fuzzy information retrieval system.

The last approach can be used for general data mining as

well. It can be directly applied in the data mining domain.

Extended Boolean queries, that is softened Boolean search

expressions, can be interpreted as symbolic fuzzy classifiers

that describe a fuzzy subset of some data set by means of its

features. Moreover, a fuzzy classifier evolved over a training

data set can later be used for efficient and fast classification of

new data samples and e.g. predict quality of products, detect

harmful actions in computer network, and generally assign

labels to data samples.

Artificial evolution of search expressions is a promising

approach to data mining because genetic programming yields

very good ability to find symbolic expressions in various

problem domains. The general process of classifier evolution

can be used to evolve custom classifiers for different data

classes and various data sets with different properties and with

different internal structure. The resulting classifiers can be used

as standalone data labeling tools or participate in collective

decision in an ensemble of data classification methods.

In the remainder of this paper, we describe fuzzy infor-

mation retrieval as the background of the proposed fuzzy

classifier. Then we present genetic algorithms and genetic

programming as the tool to infer the classifiers from data. Later

on, the construction of fuzzy classifier and experiments with

real-life data sets are presented and conclusions are drawn.

II. FUZZY INFORMATION RETRIEVAL

The proposed fuzzy classification algorithm builds on the

extended Boolean IR model, which is based on the fuzzy set

theory and fuzzy logic [3], [4]. In the extended Boolean IR

model, documents are interpreted as fuzzy sets of indexed

terms. In each document, every indexed term has a weight from

the range [0, 1] expressing the degree of significance of the

term for document representation. Many different weighting

approaches can be used to assign weights to index terms, e.g.

the tf · idft term weighting scheme [5].

The entire document collection can be represented by a

real valued index matrix D, where each row di represents

i−th document and value dij j−th term in i−th document.

The query language in the extended Boolean model of IR

is improved with the possibility of weighting query terms in

order to attribute different levels of importance to those in a

search request and by weighting (parameterizing) aggregation

operators (most often AND, OR, and NOT) to soften or blur

their impact on query evaluation [3], [4].

Consider Q to be the set of user queries over a collection;

then the weight of term t in query q is denoted as a(q, t)
satisfying a : Q × T → [0, 1]. To evaluate the atomic

query of one term representing single search criterion the

function g : [0, 1] × [0, 1] → [0, 1] will be used. The value

of g(F (d, t), a) is called the retrieval status value (RSV). For

RSV evaluation the interpretation of the query term weight

a is crucial. The most commonly used interpretations see the

query term weight as the importance weight, threshold or ideal

document description [3], [4].

The theorem for the evaluation of RSV in the case of

threshold interpretation is shown and (1) respectively [3],

[4], where P (a) and Q(a) are coefficients used for tuning

the threshold curve. An example of P (a) and Q(a) could

be as follows: P (a) = 1+a
2 and Q(a) = 1−a2

4 . The RSV

978-1-4577-0653-0/11/$26.00 ©2011 IEEE 313

formula from (1) is illustrated in Fig. 1. Adopting the threshold

interpretation, an atomic query containing term t of the weight

a is a request to retrieve documents having F (d, t) equal or

greater to a. Documents satisfying this condition will be rated

with high RSV and contrariwise documents having F (d, t)
smaller than a will be rated with a small RSV.

g(F (d, t), a) =

{

P (a)F (d,t)
a

for F (d, t) < a

P (a) +Q(a)F (d,t)−a

1−a
for F (d, t) ≥ a

(1)

The operators AND, OR, and NOT can be evaluated with the

Fig. 1: g(F (d, t), a) according to (1).

help of fuzzy set operations. Fuzzy set operations are exten-

sions of crisp set operations on fuzzy sets [6]. A characteristic

function uniquely defines a fuzzy set and hence fuzzy set

operations are defined using characteristic functions [7]. In [6]

L. Zadeh defined basic methods for the complement, union

and intersection of fuzzy sets. Next to these standard (Zadeh’s)

fuzzy set operations, whole classes of prescriptions for defining

the complements, intersections and unions on fuzzy sets were

later designed [8].

In this study, we use the threshold interpretation of RSV and

standard t-norm (2) and t-conorm (3) for the implementation

of AND and OR operators and fuzzy complement for the

evaluation of NOT operator (4).

c(x) = 1− x (2)

t(x, y) = min(x, y) (3)

s(x, y) = max(x, y) (4)

However, the use of other common t-norm and t-conorm pairs

is possible.

A. IR evaluation

The effectiveness of an information retrieval system can

be evaluated using the measures precision P and recall R.

Precision corresponds to the probability of retrieved document

to be relevant and recall can be seen as the probability of

retrieving relevant document.

Precision and recall in the extended Boolean IR model can

be defined using the Σ−count ‖A‖ [9]:

ρ(X|Y) =

{

‖X∩Y ‖
‖Y ‖ ‖Y ‖ 6= 0

1 ‖Y ‖ = 0
(5)

P = ρ(REL|RET) R = ρ(RET |REL) (6)

where REL stands for the fuzzy set of all relevant documents

and RET for the fuzzy set of all retrieved documents.

For an easier IR effectiveness evaluation, measures combin-

ing precision and recall into one scalar value were developed.

The F-score F is among the most used scalar combinations of

P and R:

F =
(1 + β2)PR

β2P +R
(7)

The index matrix D can be seen as a general data matrix

with m rows (data samples) and n columns (data features).

The evaluation of Extended Boolean query over the document

collection generates an ordering of the documents (i.e. it as-

signs a real value from the range [0, 1] to each document). The

ordering can be also interpreted as a fuzzy set of documents.

If we abandon the IR terminology, we can call the extended

Boolean query a general fuzzy classifier and use it to describe

fuzzy sets or fuzzy sub sets of data by its features.

III. GENETIC ALGORITHMS AND GENETIC PROGRAMMING

The evolution of fuzzy classifiers for data mining uti-

lizes genetic programming. In this section, we provide brief

introduction into the area of evolutionary computing and

genetic programming in particular. Moreover, we describe

the application of genetic programming to evolutionary query

optimization.

A. Genetic algorithms and genetic programming

Genetic algorithms are a popular member of the wide

chapter of evolutionary algorithms. They are based on the

programmatic implementation of genetic evolution and they

emphasize selection and crossover as the most important

operations in the evolutionary optimization process [10], [11].

Genetic algorithms evolve a population of chromosomes rep-

resenting potential problem solutions encoded into suitable

data structures. The evolution is performed by genetic oper-

ators modifying the chromosomes, i.e. the encoded forms of

problem solutions. Genetic programming (GP) is an extension

to genetic algorithms, allowing work with hierarchical, often

tree-like, chromosomes with an unlimited length [10], [12]. In

GP, the chromosomes take the form of hierarchical variably-

sized expressions, point-labeled structure trees. The trees are

constructed from nodes of two types, terminals and functions.

The chromosomes are evaluated by the recursive execution of

instructions corresponding to tree nodes [13]. Terminal nodes

are evaluated directly (e.g. by reading an input variable) and

functions are evaluated after left-to-right depth-first evaluation

of their parameters.

Genetic operators are applied to the nodes in tree-shaped

chromosomes. A crossover operator is implemented as the

mutual exchange of randomly selected sub-trees of the parent

chromosomes. Mutation has to modify the chromosomes by

pseudo-random arbitrary changes in order to prevent premature

convergence and broaden the coverage of the fitness landscape.

Mutation could be implemented as:

i) removal of a sub-tree at a randomly chosen node

ii) replacement of a randomly chosen node by a newly

generated subtree

314

iii) replacement of node instruction by a compatible node

instruction (i.e. a terminal can be replaced by another

terminal, a function can be replaced by another function

of the same arity)

iv) a combination of the above

Genetic programming facilitates the efficient evolution of

symbolic expressions, even whole computer programs. In

this work, we use genetic programming for fuzzy classifier

optimization.

B. Evolutionary query optimization

Genetic programming has been recently used for the opti-

mization of extended Boolean queries [14], [15]. It was shown

that genetic programming was able to optimize search queries

so that they described a set of relevant documents. In the fuzzy

information retrieval model, the relevant documents formed

a fuzzy subset of the set of all documents and the extended

Boolean queries were evolved to describe them.

An information retrieval system based on the extended

Boolean IR model was implemented to validate evolutionary

query optimization. The tf · idft term statistics [5] were

used for document indexing and query weights (RSV) were

evaluated using (1). The query language in the IRS supported

the standard Boolean operators AND, OR, and NOT.

The information retrieval system served as a test bed for

evolutionary query optimization and allowed genetic program-

ming over extended Boolean queries. The GP evolved tree

representations of search queries with Boolean operators as

function nodes and terms as leaves. Both operator nodes and

term nodes were weighted. In order to generate a random initial

population for the GP, the system was able to generate random

queries. The particular settings of the random query generator

showing the probabilities of generating a particular query node

are summarized in Table Ia.

The implementation of a crossover operator for GP is

straightforward. In the experimental information retrieval sys-

tem, it was implemented as a mutual exchange of two ran-

domly selected branches of parent tree chromosomes. The

mutation operator in query GP aims to perturb the content and

structure of the chromosomes randomly. In our implementa-

tion, it selects a node from the processed chromosome at ran-

dom and performs one of the mutation operations summarized

in Table Ib.

The query mutation types that were implemented included:

i) change of selected node weight.

ii) replacement of selected node type by a compatible node

type (i.e. operator OR replace by operator AND, term

replaced by another term).

iii) insertion of NOT operator before selected node.

iv) removal of NOT operator if selected.

v) replacement of selected node by a randomly generated

branch.

The IR measure F-Score (7) was used as a fitness function.

This study extends the framework for genetic evolution of

extended Boolean queries to the evolution of general fuzzy

classification rules. For test each data set, a fuzzy rule that

TABLE I: Random query generation an mutation probabilities.

(a) Probabilities of generating random
query nodes.

Event Probability

Generate term 0.5
Generate op. AND 0.24
Generate op. OR 0.24
Generate op. NOT 0.02

(b) Probabilities of mutation operations.

Event Probability

Mutate node weight 0.5
Insert or delete NOT node 0.1
Replace with another node or
delete NOT node

0.32

Replace with random branch 0.08

would describe known classes can be found. Rules found using

such a supervised learning procedure can be subsequently used

to classify new data samples. The learning of a classifier can

be long time process (depending on the dimension of the data).

On the other hand the classification (i.e. evaluation of the

classifier) of each data sample is very fast and can be used

also in real time.

IV. SOME USE CASES OF FUZZY RULE EVOLUTION

We have evaluated the evolution of fuzzy rules in two real

world application areas. Genetic programming was used to

evolve fuzzy rules describing faulty products in a product

processing plant and rules detecting malicious traffic in a

computer network. The latter classifier can be used for instance

in an intrusion detection system.

A. Genetic evolution of fuzzy classifier for quality prediction

In heavy industry, a product is created. During its process-

ing, a number of product features are measured and recorded.

The features include the chemical properties of the raw ma-

terial, density, temperature at several processing stages, and

many other indicators that are recorded several times during

the production. At the end, the product is classified as either

flawless or defective. The data and classification for a number

of product samples are known and the goal of the genetic

programming is to find a fuzzy classifier that could be used

for product quality prediction during product processing.

The problem differs from the query optimization task only

semantically. We interpret products as documents and product

features as terms. The product feature value then corresponds

to the index weight of a term in a document (feature weight

in a product). The product class corresponds to document

relevance.

1) Initial evaluation: We have obtained a test data set from

a product processing plant. The data set contained 204 sam-

ples with 839 features each. 200 samples described flawless

products (class 0) and 4 samples described defective products

(class 1). The raw product features values were normalized

to the interval [0, 1]. A sample of product features data

315

after normalization is shown in Table IIb. The mapping of

normalized data onto an IRS index matrix is demonstrated

in Table IIc. The goal of the optimization algorithm was to

find a fuzzy classifier that would describe the set of defective

products as well as possible. As the data set is very small and

contains only 4 samples of defective products, the results of

presented experiment should be seen as a proof of concept

rather than a rigorous evaluation of the algorithm. Besides, it

illustrates the mapping of data to IR concepts nicely.

Feat. Feat. . . . Feat. Prod.
Id 1 2 839 class

1 122.42 120.8 . . . 31 1
2 122.61 120.5 . . . 32 1
3 123.13 121.7 . . . 32 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
204 117.99 116.1 . . . 21 0

(a) Product features.

Feat. Feat. . . . Feat. Prod.
Id 1 2 839 class

1 0.846 0.951 . . . 0.148 1
2 0.856 0.9452 . . . 0.160 1
3 0.882 0.968 . . . 0.160 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
204 0.618 0.861 . . . 0.025 0

(b) Normalized product features

D =

0.846 0.951 · · · 0.148

0.856 0.9452 · · · 0.160

.

.

.
.
.
.

. . .
.
.
.

0.618 0.861 · · · 0.025

(c) Product features data set as an IRS index
matrix D.

TABLE II: Product features data set.

The fuzzy classifier that was evolved by the algorithm

corresponds to a search expression that describes the class of

defective products in terms of product features. The parameters

of the executed GP (found after initial tuning of the algorithm)

are shown in Table III.

During 12 independent optimization runs, the GP delivered

a best classifier with a fitness of 0.9996 and a worst classifier

a with fitness of 0.399872. Every fuzzy classifier reaching a

fitness of 0.5 and higher was able to identify all defective

products without an error or without false positives (i.e.

without flawless products being marked as defective). A fuzzy

classifier with a fitness higher than 0.5 was evolved in 10 cases

out of 12 independent runs. An example of several evolved

fuzzy classifiers is shown in Table IV.

The best classifier found by the algorithm was Q1. It was

indeed a perfect expression describing defective products in

the available data set. It was superior in terms of its F-Score,

but also in terms of precision and recall because it describes

defective products only.

2) 508 features data sets: After the initial success of

evolutionary classifier induction, we have generated fuzzy rules

TABLE III: GP parameters used to evolve fuzzy classifier for

quality prediction.

Parameter Value

Population size 100
Generations limit 1000
Fitness F-Score
Mutation probability 0.8
Crossover probability 0.02
Independent runs 12

TABLE IV: An example of evolved fuzzy classifiers for quality

prediction.

Label Query Fitness

Q1 (Best) (Feat308:0.79 and:0.95
(Feat295:0.36 or:0.34
Feat413:0.99))

0.9996

Q2 Feat641:0.998113 0.5759
Q3 (Feat641:0.97 and:0.06

(Feat593:0.76 and:0.81
Feat421:0.80))

0.6066

Q4 (Worst) Feat426:0.999203 0.3999

describing faulty products in another industrial data set. The

data set contained readings from 508 sensors on 5 different

assembly lines. For each assembly line, the data was divided

into training (20%) and test (80%) collection. We label the data

sets according to the number of samples in the test collection,

so e.g. D844 represents a collection with 844 test samples.

However, since the data comes from different parts of the

production plant, their internal structure differs as well and

the patterns desrcibing faulty products in such data sets are

unique.

TABLE V: Classification results for different industrial data

sets with 508 features.

Data set
D844 D233 D1134 D73226 D3034

OA 97.63 97.00 99.50 96.99 99.60
FP 1.30 3.00 0 0.43 0.07
FN 1.07 0 0.53 2.58 0.33

Fig. 2: An example of best fuzzy classifiers found for data set

D1134.

In all cases, the evolved classifier reached good accuracy

of 96.99 percent and above. However, the data sets were not

really comprehensive.

316

The symbolic nature of the GP output gives us valuable

information about the features that indicate product defective-

ness. From Q1 in Table IV, we can see that the product can

already be classified as faulty or flawless after the value of

feature 413 (out of 839 measured product features) was read.

Therefore, a defective product can be removed from production

at an earlier stage and costs can be saved. Moreover, it is also a

good clue telling us what features are really worth measuring.

The other sensors can be suspended and savings can be made.

Last but not least, the classifier provides also an important

feedback on the production process. Production specialists can

focus on adjusting the technology so that the reason for the

problematic values of identified key features are eliminated in

the future.

B. Genetic evolution of fuzzy classifier for intrusion detection

Next, the evolution of fuzzy classifier was applied to the

domain of intrusion detection. Fuzzy rules were evolved for

the KDD Cup 1999 intrusion detection data set, the de-facto

standard benchmark for data mining methods in the intrusion

detection area. It was shown that the KDD Cup 1999 data set

suffers from a number of problems. The recently published

NSL-KDD data set mitigates some of the imperfections found

in KDD Cup 1999[16].

1) Experiments with the original KDD Cup 1999 data: The

10% sample of the KDD Cup 1999 intrusion detection dataset1

was used to evolve classifiers and test their ability to detect

illegal actions. It contains 10% of the large intrusion detection

data set created in 1998 by the DARPA intrusion detection

evaluation program at MIT. The full data set contains 744 MB

data with 4,940,000 records with 41 nominal and numerical

features. For our experiments, all features were converted to

numeric and normalized.

The data describes normal traffic and 4 attack classes called

DoS (Denial of Services), U2R (User to Root), R2L (Remote

to User), and Probe (Probing). The records for each class are

divided into training (40%) and testing (60%) data set. For

each class, the training data set was used to evolve the fuzzy

classifier and testing data set was used to evaluate the detection

capabilities of the classifier. The attack classes contained

following number of records: DoS contained 195,494 training

and 293,242 testing records, U2R consisted of 38,931 training

and 58,399 testing records, R2L included 39,361 training and

59,043 testing records, and finally the Probe class consisted of

40,553 training and 60,832 testing records.

2) Intrusion detection classifier evolution: We have sought

for fuzzy classifiers describing the different attack types. For

each attack type, there were 2 crisp classes: normal traffic

(class 0) and attack (class 1). The goal of the algorithm was

to find a fuzzy classifier that would describe the set of records

describing an attack. The settings for the GP are summarized

in tab:gaFuzzyClass2.

We have observed overall accuracy of the classification

(OA) as the percent of correctly classified records in the test

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

TABLE VI: GA parameters used for fuzzy classifier evolution.

Parameter Value

Population size 100
Generations limit 5000
Fitness F-Score
Mutation probability 0.8
Crossover probability 0.02
F-Score parameter β = 1

collection, false positives (FP) as the percent of regular traffic

records classified as attacks, and false negatives (FN) as the

percent of attacks classified as regular traffic. Obviously, good

classifier would yield high OA, low FP and low FN.

The results of experiments are summarized in Table VII. An

example of best classifiers found by GP is shown in Fig. 3.

TABLE VII: Classification results for different attack types in

KDD Cup 1999.

Attack class
Probe R2L U2R DoS

OA 98.72 99.71 95.58 95.07
FP 0.46 0.07 3.69 0.48
FN 0.81 0.22 0.73 4.46

or : 0.878

feature_21 : 0.00553 or : 0.955

and : 0.87 feature_21 : 0.00553

feature_35 : 0.996 or : 0.794

or : 0.268 and : 0.858

or : 0.263 feature_5 : 0.941 feature_35 : 0.996 and : 0.879

feature_5 : 0.734 feature_0 : 0.144 feature_35 : 0.996 or : 0.994

feature_11 : 0.941 feature_11 : 0.841

Fig. 3: An example of best fuzzy classifier found for Probe

attack type in KDD Cup 1999.

We can see that the evolved classifier reached in all cases

and for all attack types good accuracy higher than 95 percent.

However, FN and FP are for some attack classes not as low

as we would like. The best results were obtained for the

R2L attack. The classifier managed to detect 99.71 percent

of attacks and misclassified only acceptable 0.22 percent of

harmless connections.

The different results for different attack classes suggest that

the nature of the features describing the attacks varies and

different GP parameters might need to be used.

C. NSL-KDD data set

The original KDD Cup data set, although widely used as

benchmark for data minig techniques in the domain of intru-

sion detection, suffers from a number of problems [17], [16].

The problems include significant overlaps between training and

317

testing data, unclear definitions of attack types, and possible

issues caused by overload of data during data collecting.

In a response to some of the problems, a new data collection

called NSL-KDD 2 was recently published. The NSL-KDD

was created by removal of the redundant records an re-

sampling of the records [16]. We have evolved fuzzy classifier

over the KDDTrain+ training data set and tested the classifier

on the KDDTest+ data set from NLS-KDD. The data sets

contain 125, 973 and 22, 544 records classified as regular (class

0) and attack (class 1). The different types of attacks are not

distinguished.

The fuzzy classifier found by genetic programming is shown

in Fig. 4 and its performance is described in Table VIII.

TABLE VIII: Classification results for NLS-KDD data set.

NLS-KDD

OA 82.74
FP 3.92
FN 13.30

or : 0.912

feature_7 : 1 or : 0.977

and : 0.0112 or : 0.967

feature_9 : 0.326 feature_33 : 0.0518 and : 0.0112 or : 0.789

feature_9 : 0.631 feature_33 : 0.0518 feature_35 : 0.481 or : 0.981

feature_22 : 0.191 and : 0.644

feature_31 : 1 or : 0.746

feature_38 : 0.783 feature_27 : 0.237

Fig. 4: Best fuzzy classifier found for the NLS-KDD data set.

The classifier found by genetic programming outperforms

all methods presented in [16] in terms of classification ac-

curacy. However, it does not yield as good results as some

other methods applied on the NLS-KDD data set in the recent

time [18]. Moreover, the evolution of the classifier was stopped

after 5000 generations while there was still improvement seen

in the consecutive populations.

V. CONCLUSIONS

We have implemented a genetic programming to evolve

fuzzy classifiers for data mining. In contrast to previous efforts

in this area (see e.g. [19]), our approach is inspired by

information retrieval. We interpret data classes as fuzzy sets

and evolve fuzzy search expressions that would describe such

sets rather than traditional rule-based fuzzy classifiers. The data

mining problems were reformulated as information retrieval

tasks and the search query optimization algorithm was used

to infer symbolic fuzzy classifiers describing classes of data

records.

The evolution of fuzzy classifier for data mining is an

ongoing project. We have used the genetic programming

originally developed for query optimization and the results are

2http://nsl.cs.unb.ca/NSL-KDD/

encouraging. However, a number of tasks deserves attention.

The choice of the best fitness function (are IR measures

really the best fitness function for classifier evolution?) or the

interpretation of the fuzzy weights in the classifier (is the IR

retrieval status value the optimal choice?) are among the most

appealing open questions.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Industry and

Trade of the Czech Republic, under the grant no. FR-TI1/420.

REFERENCES

[1] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, Fuzzy Models

and Algorithms for Pattern Recognition and Image Processing (The

Handbooks of Fuzzy Sets). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2005.

[2] A. Verikas, J. Guzaitis, A. Gelzinis, and M. Bacauskiene, “A general
framework for designing a fuzzy rule-based classifier,” Knowledge and

Information Systems, pp. 1–19, 2010.
[3] F. Crestani and G. Pasi, “Soft information retrieval: Applications of

fuzzy set theory and neural networks,” in Neuro-Fuzzy Techniques

for Intelligent Information Systems, N. Kasabov and R. Kozma, Eds.
Heidelberg, DE: Springer Verlag, 1999, pp. 287–315.

[4] D. H. Kraft, F. E. Petry, B. P. Buckles, and T. Sadasivan, “Genetic
Algorithms for Query Optimization in Information Retrieval: Relevance
Feedback,” in Genetic Algorithms and Fuzzy Logic Systems, E. Sanchez,
T. Shibata, and L. Zadeh, Eds. Singapore: World Scientific, 1997.

[5] G. Salton and C. Buckley, “Term-weighting approaches in automatic text
retrieval,” Information Processing and Management, vol. 24, no. 5, pp.
pp. 513–523, 1988.

[6] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. pp. 338–
353, 1965.

[7] J. Jantzen, “Tutorial On Fuzzy Logic,” Technical University of Denmark,
Dept. of Automation, Technical Report 98-E-868 (logic), 1998.

[8] T. Feuring, Fuzzy-systeme. Institut für Informatik, Westfälische Wil-
helms Universität, Münster, 1996.

[9] H. L. Larsen, “Retrieval evaluation,” in Modern Information Retrieval

course. Aalborg University Esbjerg, 2004.
[10] J. Koza, “Genetic programming: A paradigm for genetically breeding

populations of computer programs to solve problems,” Dept. of Computer
Science, Stanford University, Tech. Report STAN-CS-90-1314, 1990.

[11] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[12] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[13] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham, Genetic Al-

gorithms and Genetic Programming: Modern Concepts and Practical

Applications. Chapman & Hall/CRC, 2009.
[14] D. Húsek, S. S. J. Owais, V. Snášel, and P. Krömer, “Boolean queries

optimization by genetic programming,” Neural Network World, pp. 359–
409, 2005.

[15] V. Snasel, A. Abraham, S. Owais, J. Platos, and P. Kromer, Emergent

Web Intelligence: Advanced Information Retrieval, ser. Advanced
Information and Knowledge Processing. ch. User Profiles Modeling in
Information Retrieval Systems, pp. 169–198, Springer London, 2010.

[16] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in CISDA’09: Proc. of the Second

IEEE int. conf. on Computational intelligence for security and defense

applications. Piscataway, NJ, USA: IEEE Press, 2009, pp. 53–58.
[17] M. Sabhnani and G. Serpen, “Why machine learning algorithms fail in

misuse detection on kdd intrusion detection data set,” Intell. Data Anal.,
vol. 8, no. 4, pp. 403–415, 2004.

[18] M. Panda, A. Abraham, and M. Patra, “Discriminative multinomial naive
bayes for network intrusion detection,” in Inf. Assurance and Security

(IAS), 2010 Sixth Int. Conf. on, 2010, pp. 5 –10.
[19] B. Carse and A. G. Pipe, “A framework for evolving fuzzy classifier

systems using genetic programming,” in Proceedings of the Fourteenth

International Florida Artificial Intelligence Research Society Conference.
AAAI Press, 2001, pp. 465–469.

318

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

