
Searching similar images - Vector Quantization with S-tree

Jan Platos, Pavel Kromer, Vaclav Snasel, Ajith Abraham

Department of Computer Science, FEECS
IT4 Innovations, Centre of Excellence
VSB-Technical University of Ostrava

17. listopadu 15, 708 33, Ostrava Poruba, Czech Republic
{jan.platos,pavel.kromer,vaclav.snasel}@vsb.cz, ajith.abraham@ieee.org

Abstract—Searching of similar pictures was in the past based
mainly on searching of similar picture names. We try to find an
effective method how to search pictures by searching of similar
information in the picture (histograms, shapes, blocks,). There
already are some methods but still not effective enough. In
this paper we describe a method where we combine vector
quantization (VQ) and fuzzy S-trees. Work contains testing of
our approach and you can see results in a final chapter of this
paper. The benefit of this work is not the final solution but we
put a key-stone for further research and for optimizations. First
tests show up the efficiency and usefulness of our approach,
which is under laid by executed tests.

Keywords-vector quantization, image similarity, s-tree, fuzzy
sets

I. INTRODUCTION

Nowadays we still don’t have an effective method for

searching of similar pictures. Basically, there are two ways

how to search similar pictures. First, we may search a similar

name of picture; second we try to exploit image information

from the picture, eventually combination of these methods.

If we search just by picture name, we have to demand on

the correct label of a picture which also clearly describes

what is in the picture. This is never guaranteed.

That’s why we focus on an alternative method. There

already are some methods using information in an image

instead of name but in some cases they fail.

As a first step we give a reference picture to the algorithm

and algorithm tries to find the most similar picture(s).

Algorithm may use color information (histogram) or image

may be spread out into vectors and we compare those

vectors. The method where we compare vectors is called

vector quantization. Vector quantization was used in the past

several times. Vector quantization was used for comparison

of image thumbnails in [4]. A comparison of the vector

quantization codebook was used for image retrieval in [9],

Teng [11] uses vector quantization fro image indexing and

retrieval with preservation of pixel position and Rahman et

al. [8] uses vector quantization in fuzzy feature space for

Biomedical image retrieval.

II. VECTOR QUANTIZATION (VQ)

Vector quantization has been used for image compression

for many years. In this section, we will briefly review the

basic concepts of VQ image compression.

In most image compression techniques, the actual quanti-

zation or coding is done on scalars (e.g. on individual real-

value samples of waveforms or pixels of images). Transform

coding does it by first taking the block transform for a

block of pixels and then individually coding the transform

coefficients. Predictive coding does it by quantizing an error

term formed as the difference between the new sample and a

prediction of the new sample based on pasted coded outputs

[11].

A fundamental result of Shannon’s rate-distortion theory,

the branch of information theory devoted to data compres-

sion, is that better performance can always be achieved by

coding vectors (a group of values) instead of scalar (indi-

vidual value). Thus, vector quantization can successfully be

used for image and audio compression. A vector quantizer

can be defined as a mapping Q of K-dimensional Euclidean

space RK into a finite subset Y of RK , that is

Q : RK → Y

where Y = (x′i; i = 1, 2, . . . , N), and x′i is the i-th
vector in Y . Y is the set of reproduction vectors and is

called a VQ codebook or VQ table. N is the number of

vectors in Y . At the encoder, each data vector x belonging

to RK is matched or approximated with a codeword in

the codebook and the address or index of that codeword

is transmitted instead of the data vector itself. To find the

best match codeword for a data vector, we can use Euclidean

or Manhattan distance.

III. STRUCTURE OF S-TREE

Basic Concept of S-Tree: In the dynamic office en-

vironment retrieval and insertions are frequent operations.

A self-organizing tree (S-Tree) has been proposed as a

means for solving problems by imposing tree-structured

constraint on the solution. Applying the indexed signature

approach here, means to store the signatures in the order

the associated objects are inserted. That is, new signatures

are entered into the last partially filled node, and OR-ed

to the covering signatures above [7]. Although suggests

supporting the expectation of many insert operations by

384978-1-4673-4792-1 c©2012 IEEE



partially filling the nodes at creation time, performance

may decrease because the signature tree is designed as a

static structure. Moreover, a frequent processing of a time

consuming periodic reorganization should be avoided in the

dynamic office environment. Often new inserted signatures

would not be inserted into the appropriate leaf. Here, ’appro-

priate’ means the leaf where similar signatures are stored.

’Similar signatures’ are signatures with many set ones in

same positions [2].

Figure 1. S-Tree - overlay signatures

Definition: Similar to a B+-tree, an S-tree is a height

balanced multiway tree, whose index part is managed like a

B tree [1]. Each node corresponds to a page. The leaf nodes

contain either the objects or Object identifiers (Oid). The

former case we call an immediate S-tree, the latter a mediate

S-tree. The leaves of a mediate S-tree contain entries of the

form 〈s,Oid〉 where the object is accessed by the Oid. The

signature s is generated by applying an appropriate hash

transformation on the object’s attribute values, which maps

them into a bit string s = b1|b2| . . . |bL of fixed length L
with bi ∈ 0, 1. A signature in a non-leaf node is defined by

superimposing the signatures contained in its son node (via

the signature operator σ). Therefore, entries E in non-leaf

nodes have the form 〈s, p〉 with the property

s = s(N(p)) := ({E.s|E ∈ N(p)}) :=
∑

E∈N(p)

E.s

where N(p) refers to the node p and E.s denotes the

signature component of an entry E. Now we can define a

mediate S-tree of the type (K, k, h), where K, k, h ∈ N0,

with the following properties:

1) Each path from the root to any leaf hat the same length

h (height).

2) The root has at least 2 and at most K sons unless it

is a leaf.

3) Every node except the root has at least k and at most

K sons.

4) The signatures contained in each non-leaf node are

minimal.

IV. FUZZY SETS

Fuzzy set A is defined in terms of a relevant universal set,

X , by a function analogous to the characteristic function.

This function called a membership function, assigns to each

element x ∈ X a number, A(x), in the closed unit interval

[0, 1] that characterizes the degree of membership of x in

A. Membership functions are thus functions of the form

A : X → [0, 1]

In defining a membership function, the universal set X is

always assumed to be a classical set [5].

A. Fuzzy S-tree

We can obtain a data structure for the storing of fuzzy

signatures by a modification of the S-tree.

Fuzzy signatures of images will be stored in leaf pages

rather than ordinary signatures. In the non-leaf pages there

will be fuzzy signature in a non-leaf page will correspond to

another page at the lover level. These signatures are created

as disjunctions of all fuzzy signatures in the corresponding

pages [10].

B. Fuzzy S-tree operations

In our fuzzy S-tree we use these following basic fuzzy

sets operations:

Conjunction of fuzzy signatures: The conjunction of

fuzzy signatures Fi and Fj is the fuzzy signature

Fi ∧ Fj = (fi1 ∧ fj1, fi2 ∧ fj2, . . . , fin ∧ fjn)

The operation is defined for all elements of the fuzzy

signature as

fir ∧ fjr = min{fir, fjr}
Disjunction of fuzzy signatures: The disjunction of

fuzzy signatures Fi and Fj is the fuzzy signature

Fi ∨ Fj = (fi1 ∨ fj1, fi2 ∨ fj2, . . . , fin ∨ fjn)

The operation is defined for all elements of the fuzzy

signature as

fir ∨ fjr = min{fir, fjr}
V. THE PROPOSED METHOD

In this section we describe the approach how we search

similar images in a collection. Motivation of this method is

to improve current methods that use vector quantization.

Figure 2. Proposed scheme

2012 Eighth International Conference on Next Generation Web Services Practices (NWeSP) 385



The very first step is to get the set of vectors representing

a picture. We get these vectors by dividing an image into

square blocks. Each block is a composite of explicit number

of pixels. It’s possible to get vectors not only from square

blocks but also from another shape. Image may be divided

into triangles, rhomboids, etc. Each block give us 3 different

vectors: one vector represents red color component, one

is for green color and one for blue color. It’s possible to

reduce the color information and obtain only one vector

representing the block of picture in gray scale color.

Depending on a block size we get vectors of appropriate

size. We typically use blocks 2x2, 4x4 and 8x8 which

produce vector sizes 4, 16 and 64. This is a method how we

get three sets of vectors which represents each image. We

repeat this decomposition for each image which produces

the multi-set for each color.

These sets are huge and that’s why we choose only

those vectors which are typical for our image. Selection of

appropriate vectors is realized by LBG algorithm (Linde-

Buzo-Grey) [6]. So far, several codebook design algorithms

had been proposed to design the VQ codebooks. Among

them, the LBG algorithm is the most commonly used method

for codebook design.

It’s indeed possible to use any other algorithm (Data

clustering [3], K-means algorithm, Lloyd’s algorithm, etc.).

We implemented LBG with random initialization. This al-

gorithm selects typical vectors and this leads to creating our

codebook for each color (RGB). It is necessary to choose

the right size of codebook. Larger codebook size leads to

higher accuracy but it may take too much memory.

When we have a codebook we are able to create one

unique vector for each image using algorithm for vector

quantization (VQ). We implemented FSVQ algorithm which

take one train vector and search the most similar vector in

a codebook. Codeword index is put into mentioned vector.

Then this vector exactly specifies each image. Vector size is

given by number of blocks in an image.

Because these vectors are huge we decided to reduce

them.

Example:: If we have an image about size 300x200

pixels and we have block size set up on 2x2, our codebook

has size 512. We can count, how much space we need for

image vector and fuzzy vector in memory.

Image: 300 x 200 = 60000÷ 4 = 15000 blocks

Image vector: 15 000 x 4B = 60kB

Fuzzy vector: 512 x 4B = 2kB

We transformed each image vector to fuzzy vector. First

we create en empty fuzzy vector of size of codebook. First

item in vector represents the number of presence of first

codeword in codebook (CW), the second item represents

the number of presence of second codeword. We will repeat

this technique for all items of fuzzy vector.

So, this fuzzy vector has a size of codebook and contains

number of codewords’ presence in an image vector.
Fuzzy vector contains fuzzy numbers. Precondition for

this transformation is to have images of the same size

because these will have the same count of train vectors.

Whereas each image has the same count of train vectors we

can consider codewords’ presence as fuzzy numbers.
Fuzzy number is a real number range form 0 to 1.

Figure 3. Image vector to fuzzy vector

Example in Fig. 3 shows the image vector of size 600

blocks and fuzzy vector of size 64. Transformation to fuzzy

number is realized as

X = CW/CT : (X ⊆ R|X 〈0, 1〉)
where X is fuzzy number, CW is number of codewords

in image vector and CT is number of train vectors.
So that, we may understand the first item of fuzzy vector

as a fuzzy number, e.g. 40/600 = 0, 067. Because it is easier

and faster to work with integers rather then real number, we

decided to imagine fuzzy number X as CW/CT .

A. Fuzzy S-tree
Our method is designed for searching in very large

collection of pictures so we had to choose some appropriate

’storage’ for our vectors. As a very good structure we

choose B+ trees first but these structures are not designed

for storing vectors. The other and very similar structure

is the S-Tree. We just had to redesign the algorithm for

saving real numbers instead of just binary numbers which

was the original implementation. Then we could easily

store our fuzzy vectors into this modified S-Tree structure.

Fuzzy S Tree features are very close to the original S-Tree.

Differences are in these features:

1) We use fuzzy numbers 〈0, 1〉 in signatures instead of

0 or 1.

2) After inserting of fuzzy signatures we overlay signa-

tures by disjunction of fuzzy signatures (4.2) instead

of logical disjunction which was originally used in S-

tree.

3) For searching of signatures we use conjunction of

fuzzy signatures (4.2) instead of logical conjunction

which was originally used in S-tree.

4) Original S-tree uses Hamming distance which is de-

fined only for vectors [0, 1]. Because we use real num-

bers we had to use Euclidean distance for signature

similarity detection

386 2012 Eighth International Conference on Next Generation Web Services Practices (NWeSP)



Figure 4. Vector of codewords in image

Figure 5. Image collection sample

Q =

√√√√
n∑

i=1

(pi − qi)2

VI. EXPERIMENTAL RESULTS

We were testing two basic aspects of our method. Because

we combined vector quantization and S-trees we tested

each part independently. We tested many sets of pictures in

collection of size of 100 pictures. In this paper we show four

representative sets that have some typical results. The first

set is a classic picture of Lena which is rustled if four steps.

Then we show body collection, birds and moon collection.

We have 4 set of test pictures shown in Fig 5.

Each picture in collection is spread out into vectors that

are consequently compared among each other based on

Euclidean’s distance. Individual vectors look like vector in

Fig. 4. Each column in graph represents the number of

repetition of codeword in the picture. This graph shows four

vectors for picture of Lena and we want to take a notice

of similarities between them. From this graph is evident

that some codewords haven’t even occur in a picture (e.g.

positions 25 and 29). This happened because the codebook is

created for the whole collection of pictures. At the position

26, one of the pictures has much higher value of repetition

than other pictures, so Euclidean distance will be longer

than e.g. codeword on a position 28. We can easily see by

naked eye that all values here are very similar so Euclidean

distances will be similar too. That means that also pictures

in this spot are similar.

If we compare all vectors, we get values representing

distances between all individual pictures.

Tests are conceived to we could be able to compare a

fruitfulness of searching of similar pictures using vector

quantization with and without using fuzzy S-trees.

So let’s first look at the quality of vector quantization.

A. Vector quantization testing

After some tests we found the best settings for codebook,

block size and threshold as following:

• 8 - block size

• 512 - book size

• 0.01 - threshold

S-tree node was set to the size 1000 because we wanted

to have all pictures in one node for VQ testing.

Figure 6. Vector quantization hit rate

As you can see in graphs and tables bellow, results of

collections of Lena and Bodies were very good. In both

collections we found all pictures from corresponding col-

lection. Collections of moons and birds sometimes faulted,

so we obtained pictures that were not in a collection, but we

have to mention that there were sometimes big differences

between pictures even in one collection. Fig.6 shows results

of measurement where we measured hit ratio. Hit ratio I

column is preciseness for pictures from test pictures. 100%

means we found exactly mentioned 4 test pictures. Hit ratio

II column show preciseness of searching when we found

some picture that is not in test pictures but is still similar to

those pictures ( for example some other similar bird when

we were searching birds).

2012 Eighth International Conference on Next Generation Web Services Practices (NWeSP) 387



B. Fuzzy S-Tree testing

For searching of similar pictures in fuzzy S-tree is neces-

sary to chose the right size of the node in this tree. This size

should be chosen according to size of the whole collection. If

we would choose too small size of node, fuzzy S-tree will

have too many nodes and cause its overlying. We choose

the size of node to value 8 and other properties were set as

following:

• 8 - block size

• 512 - book size

• 0.01 - threshold

Figure 7. VQ with fuzzy S-tree hit rate

Now, let’s look at results of second testing. As you can

see in graphs and tables bellow, results of collections of

Lena and Moon are still good enough but fruitfulness is

not already excellent. In both collections we found almost

all pictures from corresponding collection. Collections of

Bodies and Birds faulted more frequently. With this method

we achieved average fruitfulness about 75%. Hit ratio II

column in Graph 7 show preciseness of searching when we

found some picture that is not in test pictures but is still

similar to those (Moons).

Now we can compare hit rate of searching similar images

with and without using fuzzy S-Tree.

C. Comparation

Now let’s compare methods 6.1 and 6.2. If we look at

Graph 1. and Graph 2. we can deduce following conclusions.

Test collections (Birds, Bodies, Moons and Lena) have worse

hit rate of searching but fruitfulness of searching is still very

good ( 75%). In comparison to method 6.1 is a fruitfulness

just about 10 - 15% lower. It is caused by dividing of the

node in S-tree and using of overlying. Even if using of S-

tree is not as reliable as without S-tree, it is much faster in

large collections.

VII. CONCLUSION

In our work we present a method for searching similar

pictures using vector quantization and fuzzy S-trees. Fuzzy

S-tree is actually modified data structure of S tree described

in work of U. Depish [2]. Our approach for searching of

similar pictures appears as a very effective method which

can be used in a practice. This is based on executed

experimental tests. Total fruitfulness of searching by our

method is basically from range 75-100% which means that

more than 75% of found pictures are exactly pictures form

our small set of similar pictures. In the future it’s possible

to do some optimizations in both phases - phase of vector

quantization and phase of saving fuzzy vectors into S-tree.

This work confirmed our premise that using of S-trees maybe

effective for searching in large collections and it does have

a sense to deal with it. This work also gives a good base for

further optimizations and further research.

REFERENCES

[1] R. Bayer and E. McCreight. Organisation and maintenance of
large ordered indexes. Acta Informatica, 1:173 – 189, 1972.

[2] U. Deppisch. S-tree: a dynamic balanced signature index for
office retrieval. In Proceedings of the 9th annual international
ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’86, pages 77–87, New York,
NY, USA, 1986. ACM.

[3] J. Hartigan. Clustering algorithms. Wiley series in probability
and mathematical statistics: Applied probability and statistics.
Wiley, 1975.

[4] V. R. Khapli and A. S. Bhalchandra. Compressed domain
image retrieval using thumbnails of images. Computational
Intelligence, Communication Systems and Networks, Interna-
tional Conference on, 0:392–396, 2009.

[5] G. Klir, U. Clair, and B. Yuan. Fuzzy set theory: foundations
and applications. Prentice Hall, 1997.

[6] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector
quantizer design. Communications, IEEE Transactions on,
28(1):84 – 95, jan 1980.

[7] J. L. Pfaltz, W. J. Berman, and E. M. Cagley. Partial-
match retrieval using indexed descriptor files. Commun. ACM,
23(9):522–528, Sept. 1980.

[8] M. M. Rahman, S. K. Antani, and G. R. Thoma. Biomedical
image retrieval in a fuzzy feature space with affine region
detection and vector quantization of a scale-invariant descrip-
tor. In Proceedings of the 6th international conference on
Advances in visual computing - Volume Part III, ISVC’10,
pages 261–270, Berlin, Heidelberg, 2010. Springer-Verlag.

[9] G. Schaefer. Compressed domain image retrieval by compar-
ing vector quantization codebooks. In C. C. J. Kuo, editor,
VCIP, volume 4671 of Proceedings of SPIE, pages 959–966.
SPIE, 2002.

[10] V. Snásel. Fuzzy signatures for multimedia databases. In Pro-
ceedings of the First International Conference on Advances
in Information Systems, ADVIS ’00, pages 257–264, London,
UK, UK, 2000. Springer-Verlag.

[11] S. W. Teng and G. Lu. Image indexing and retrieval based
on vector quantization. Pattern Recognition, 40(11):3299 –
3316, 2007.

388 2012 Eighth International Conference on Next Generation Web Services Practices (NWeSP)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


