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Abstract 

The use of intelligent systems for stock market predictions has been widely established. 

In this paper, we investigate how the seemingly chaotic behavior of stock markets could 

be well represented using   several connectionist paradigms and soft computing 

techniques. To demonstrate the different techniques, we considered Nasdaq-100 index of 

Nasdaq Stock Market
SM

 and the S&P CNX NIFTY stock index.  We analyzed 7 year’s 

Nasdaq 100 main index values and 4 year’s NIFTY index values. This paper investigates 

the development of a reliable and efficient technique to model the seemingly chaotic 

behavior of stock markets. We considered an artificial neural network trained using 

Levenberg-Marquardt algorithm, Support Vector Machine (SVM), Takagi-Sugeno neuro-

fuzzy model and a Difference Boosting Neural Network (DBNN). This paper briefly 

explains how the different connectionist paradigms could be formulated using different 

learning methods and then investigates whether they can provide the required level of 

performance, which are sufficiently good and robust so as to provide a reliable forecast 

model for stock market indices. Experiment results reveal that all the connectionist 

paradigms considered could represent the stock indices behavior very accurately. 

 

Key words: connectionist paradigm, support vector machine, neural network, difference 

boosting, neuro-fuzzy, stock market. 
 

1.  INTRODUCTION 

Prediction of stocks is generally believed to be a very difficult task. The process behaves 

more like a random walk process and time varying. The obvious complexity of the 

problem paves way for the importance of intelligent prediction paradigms. During the last 

decade, stocks and futures traders have come to rely upon various types of intelligent 

systems to make trading decisions [1][3][7][11][18][19][26][23][28]. Several intelligent 

systems have in recent years been developed for modelling expertise, decision support 

and complicated automation tasks etc [28][9][15][5][24][16][29][4][17]. In this paper, we 

analysed the seemingly chaotic behaviour of two well-known stock indices namely 

Nasdaq-100 index of Nasdaq
SM

 [21] and the S&P CNX NIFTY stock index [22]. 



Nasdaq-100 index reflects Nasdaq's largest companies across major industry groups, 

including computer hardware and software, telecommunications, retail/wholesale trade 

and biotechnology [21]. The Nasdaq-100 index is a modified capitalization-weighted 

index, which is designed to limit domination of the Index by a few large stocks while 

generally retaining the capitalization ranking of companies. Through an investment in 

Nasdaq-100 index tracking stock, investors can participate in the collective performance 

of many of the Nasdaq stocks that are often in the news or have become household 

names. Similarly, S&P CNX NIFTY is a well-diversified 50 stock index accounting for 

25 sectors of the economy [22]. It is used for a variety of purposes such as benchmarking 

fund portfolios, index based derivatives and index funds. The CNX Indices are computed 

using market capitalisation weighted method, wherein the level of the Index reflects the 

total market value of all the stocks in the index relative to a particular base period. The 

method also takes into account constituent changes in the index and importantly 

corporate actions such as stock splits, rights, etc without affecting the index value.  

 

Figure 1. Training and Test data sets for Nasdaq-100 Index (b) NIFTY index 

Our research is to investigate the performance analysis of four different connectionist 

paradigms for modelling the Nasdaq-100 and NIFTY stock market indices. The four 

different techniques considered are an artificial neural network trained using the 

Levenberg-Marquardt algorithm [6], support vector machine [27], difference boosting 

neural network [25] and a Takagi-Sugeno fuzzy inference system learned using a neural 

network algorithm (neuro-fuzzy model) [13]. Neural networks are excellent forecasting 

tools and can learn from scratch by adjusting the interconnections between layers. 

Support vector machines offer excellent learning capability based on statistical learning 

theory. Fuzzy inference systems are excellent for decision making under uncertainty. 

Neuro-fuzzy computing is a popular framework wherein neural network training 

algorithms are used to fine-tune the parameters of fuzzy inference systems. We analysed 

the Nasdaq-100 index value from 11 January 1995 to 11 January 2002 [21] and the 



NIFTY index from 01 January 1998 to 03 December 2001 [22]. For both the indices, we 

divided the entire data into almost two equal parts. No special rules were used to select 

the training set other than ensuring a reasonable representation of the parameter space of 

the problem domain. The complexity of the training and test data sets for both indices are 

depicted in Figures 1 and 2 respectively. In Section 2 we briefly describe the different 

connectionist paradigms followed by experimentation setup and results in Section 3. 

Some conclusions are also provided towards the end. 

 

Figure 2. Training and Test data sets for NIFTY index 

2. INTELLIGENT SYSTEMS: A CONNECTIONIST MODEL APPROACH 

Connectionist models “learn” by adjusting the interconnections between layers. When the 

network is adequately trained, it is able to generalize relevant output for a set of input 

data. Learning typically occurs by example through training, where the training algorithm 

iteratively adjusts the connection weights (synapses). In an artificial neural network 

learning occurs by the iterative updating of connection weights using a learning 

algorithm.  

2.1 ARTIFICIAL NEURAL NETWORKS 

The artificial neural network (ANN) methodology enables us to design useful nonlinear 

systems accepting large numbers of inputs, with the design based solely on instances of 

input-output relationships. For a training set T consisting of n argument value pairs and 

given a d-dimensional argument x and an associated target value t will be approximated 

by the neural network output. The function approximation could be represented as 

}:1:),{( nitxT ii ==  

In most applications the training set T is considered to be noisy and our goal is not to 

reproduce it exactly but rather to construct a network function that generalizes well to 

new function values. We will try to address the problem of selecting the weights to learn 



the training set. The notion of closeness on the training set T is typically formalized 

through an error function of the form 
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where yi is the network output. Our target is to find a neural network η such that the 

output yi = η (xi, w) is close to the desired output ti for the input xi (w = strengths of 

synaptic connections). The error ψT = ψT (w) is a function of w because y = η depends 

upon the parameters w defining the selected network η. The objective function ψT (w) for 

a neural network with many parameters defines a highly irregular surface with many 

local minima, large regions of little slope and symmetries. The common node functions 

(tanh, sigmoidal, logistic etc) are differentiable to arbitrary order through the chain rule 

of differentiation, which implies that the error is also differentiable to arbitrary order.  

Hence we are able to make a Taylor's series expansion in w for ψT. We shall first discuss 

the algorithms for minimizing ψT by assuming that we can truncate a Taylor's series 

expansion about a point w
o
 that is possibly a local minimum. The gradient (first partial 

derivative) vector is represented by 
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The gradient vector points in the direction of steepest increase of ψT and its negative 

points in the direction of steepest decrease. The second partial derivative also known as 

Hessian matrix is represented by H 
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The Taylor's series for ψT, assumed twice continuously differentiable about w
0
, can now 

be given as 
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where O (δ) denotes a term that is of zero-order in small δ such that 0
)(O

lim
0

=
→ δ

δ

δ
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If for example there is continuous derivative at w
0
, then the remainder term is of order 
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ww −  and we can reduce (4) to the following quadratic model 
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Taking the gradient in the quadratic model of (5) yields 
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If we set the gradient g=0 and solving for the minimizing w
*
 yields 
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The model m can now be expressed in terms of minimum value of w
*
 as 
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a result that follows from (5) by completing the square or recognizing that g(w
*
)=0. 

Hence starting from any initial value of the weight vector, we can in the quadratic case 

move one step to the minimizing value when it exists. This is known as Newton's 

approach and can be used in the non-quadratic case where H is the Hessian and is 

positive definite. 

2.1.1 LEVENBERG-MARQUARDT ALGORITHM 

The Levenberg-Marquardt (LM) algorithm [6] exploits the fact that the error function is a 

sum of squares as given in (1). Introduce the following notation for the error vector and 

its Jacobian with respect to the network parameters w 
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The Jacobian matrix is a large p ×  n matrix, all of whose elements are calculated directly 

by backpropagation technique. The p dimensional gradient g for the quadratic error 

function can be expressed as 

∑
=

=∇=
n

1i
ii Je)w(ee)w(g          

and the Hessian matrix by 

∑∑
==















∂∂

∂∂
+

∂∂

∂

=
∂∂

∂
=

∂∂

∂
==

n

k

ji

kk

ji

k
k

n

k ji

k

ji

T
ij ww

ee

ww

e
e

ww

e

ww
HH

1

2

1

222

2

1ψ
 

∑
=

















+
∂∂

∂

=
n

1k

jkJikJ
jwiw

k
e

2

ke
        (10) 

Hence defining i

n

1i

2
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∇= yields the expression  
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T
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The key to the LM algorithm is to approximate this expression for the Hessian by 

replacing the matrix D involving second derivatives by the much simpler positively 

scaled unit matrix I∈ . The LM is a descent algorithm using this approximation in the 

form 
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Successful use of LM requires approximate line search to determine the rate αk. The 

matrix JJ
T
 is automatically symmetric and non-negative definite. The typically large size 

of J may necessitate careful memory management in evaluating the product JJ
T
. Hence 

any positive ∈ will ensure that Mk is positive definite, as required by the descent 

condition. The performance of the algorithm thus depends on the choice of ∈. 

 

When the scalar ∈ is zero, this is just Newton's method, using the approximate Hessian 

matrix. When ∈ is large, this becomes gradient descent with a small step size. As 

Newton's method is more accurate, ∈ is decreased after each successful step (reduction in 

performance function) and is increased only when a tentative step would increase the 

performance function. By doing this, the performance function will always be reduced at 

each iteration of the algorithm. 

2.2 SUPPORT VECTOR MACHINES (SVM) 

Support Vector Machines (SVMs) [27] combine several techniques from statistics, 

machine learning and neural networks. SVM perform structural risk minimization. They 

create a classifier with minimized VC (Vapnik and Chervonenkis) dimension. If the VC 

Dimension is low, the expected probability of error is low as well, which means good 

generalization. SVM has the common capability to separate the classes in the linear way. 

However, SVM also has another specialty that it is using a linear separating hyperplane 

to create a classifier, yet some problems can’t be linearly separated in the original input 

space. Then SVM uses one of the most important ingredients called kernels, i.e., the 

concept of transforming linear algorithms into nonlinear ones via a map into feature 

spaces. Figures 3 and 4 illustrate two categories of data using Y+ and Y- symbols.  
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Figure 3: The linearly separable case.  Figure 4: The linearly inseparable case.  



2.2.1 LINEAR SVM 

We consider N training data points {(x1, y1), (x2, y2),…..,(xN,yN)} where xi∈ R
d
 and yi ∈ 

{±1}. We would like to explain a linear separating hyperplane classifier: 

).sgn()( bxwxf −=         (13) 

 

Furthermore, we want this hyperplane to have the maximum separating margin with 

respect to the two classes. Specifically, we want to find this hyperplane HP : y = w.x – b 

= 0 and two hyperplanes parallel to it and with equal distances to it, 

 

HP1 : y = w.x – b = +1  and  HP2 : y = w.x – b = – 1      (14) 

 

with the condition that there are no data points between HP1 and HP2, and the distance 

between HP1 and HP2 is maximized. 

For any separating plane HP and the corresponding HP1 and HP2, we can always 

normalize the coefficients vector w so that HP1 will be y = w.x – b = +1, and HP2 will be 

y = w.x – b = –1. 

Our aim is to maximize the distance between HP1 and HP2. So there will be some 

positive examples on HP1 and some negative examples on HP2. These examples are 

called support vectors because only they participate in the definition of the separating 

hyperplane, and other examples can be removed and/or moved around as long as they 

don’t cross the planes HP1 and HP2. 

Recall that the 2-D, the distance from a point (x0, y0) to a line Ax+Bx+C = 0 is 
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2 . So, in order to maximize the 

distance, we should minimize w
T

ww =  with the condition that there are no data points 

between HP1 and HP2  w.x – b ≥ +1, for positive example yi = +1 and w.x – b ≥ -1, for 

negative example yi = -1 

These two condition can be combined into:   yi(w.x – b) ≥ 1 

Now the problem can be formulated as  
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This is a convex, quadratic programming problem (in w, b) in a convex set. 

Introducing Lagrange multipliers α1, α2, ….αn≥ 0, we have the following Lagrangian: 
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2.4.2 NON LINEAR SVM 

When the two classes are non-linearly distributed then SVM can transform the data 

points to another high dimensional space such that the data points will be linearly 

separable. Let the transformation be Φ(⋅⋅⋅⋅). In the high dimensional space, we solve 
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Suppose, in addition, Φ(xi)⋅⋅⋅⋅Φ(xj) = k(xi,xj). That is, the dot product in that high 

dimensional space is equivalent to a kernel function of the input space. So, we need not 

be explicit about the transformation Φ(⋅⋅⋅⋅) as long as we know that the kernel function k(xi, 

xj) is equivalent to the dot product of some other high dimensional space. 

The Mercers’s condition can be used to determine if a function can be used as a kernel 

function: 

There exists a mapping Φ and an expansion 
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if and only if, for any g(x) such that ∫ dxxg 2)(  is finite, then 
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The foundations of SVM have been developed by Vapnik [27] and are gaining popularity 

due to many attractive features, and promising empirical performance. The possibility of 

using different kernels allows viewing learning methods like Radial Basis Function 

Neural Network (RBFNN) or multi-layer Artificial Neural Networks (ANN) as particular 

cases of SVM despite the fact that the optimized criteria are not the same [14]. While 

ANNs and RBFNN optimizes the mean squared error dependent on the distribution of all 

the data, SVM optimizes a geometrical criterion, which is the margin and is sensitive 

only to the extreme values and not to the distribution of the data into the feature space. 

The SVM approach transforms data into a feature space F that usually has a huge 

dimension. It is interesting to note that SVM generalization depends on the geometrical 

characteristics of the training data, not on the dimensions of the input space. Training a 

support vector machine (SVM) leads to a quadratic optimization problem with bound 

constraints and one linear equality constraint. Vapnik [27] shows how training a SVM for 

the pattern recognition problem leads to the following quadratic optimization problem 
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Where l is the number of training examples α is a vector of l variables and each 

component iα corresponds to a training example (xi, yi). The solution of (1) is the vector 



*α for which (1) is minimized and (2) is fulfilled. We used the SVMTorch for simulating 

the SVM learning algorithm [10]. 

2.3 NEURO-FUZZY SYSTEM 

Neuro Fuzzy (NF) computing is a popular framework for solving complex problems [2]. 

If we have knowledge expressed in linguistic rules, we can build a Fuzzy Inference 

System (FIS) [8], and if we have data, or can learn from a simulation (training) then we 

can use ANNs. For building a FIS, we have to specify the fuzzy sets, fuzzy operators and 

the knowledge base. Similarly for constructing an ANN for an application the user needs 

to specify the architecture and learning algorithm. An analysis reveals that the drawbacks 

pertaining to these approaches seem complementary and therefore it is natural to consider 

building an integrated system combining the concepts. While the learning capability is an 

advantage from the viewpoint of FIS, the formation of linguistic rule base will be 

advantage from the viewpoint of ANN. 

 

Figure 5 depicts the 6- layered architecture of multiple output ANFIS and the 

functionality of each layer is as follows: 

Layer-1. Every node in this layer has a node function. )x(
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iO  is the membership grade of a fuzzy set A ( = A1, A2, B1 

or B2) and it specifies the degree to which the given input x (or y) satisfies the quantifier 

A. Usually the node function can be any parameterized function. A gaussian membership 

function is specified by two parameters c (membership function center) and σ 

(membership function width).  
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Layer-2. Every node in this layer multiplies the incoming signals and sends the product 

out. Each node output represents the firing strength of a rule.  
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fuzzy "AND" can be used as the node function in this layer. 

Layer-3. The rule consequent parameters are determined in this layer.  
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Layer-6. Every i-th node in this layer calculates the individual outputs.  
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Figure 5. Architecture of ANFIS with multiple outputs 

ANFIS uses a hybrid learning rule with a combination of gradient descent and least 

squares estimate [13]. Assuming a single output ANFIS represented by  

)S,I(Foutput =        (24) 

where I is the set of input variables and S is the set of parameters, if there exist a function 

H such that the composite function H ○ F is linear in some of the elements of S, then 

these elements can be identified by the least squares method [13]. More formally, the 

parameter set S can be decomposed into two sets: 

21 SSS ⊕=  (where ⊕  represents direct sum),   (25) 

such that H ○ F is linear in the elements of 2S . Then upon applying H to equation (6.1), 

we have: 

)S,I(FH)output(H o=       (26) 

which is linear in the elements of 2S . Now the given values of elements of 1S , we can 

plug P training data sets into (6.3), and obtain a matrix equation: 

AX = B (X = unknown vector whose elements are parameters in 2S ) (27) 

If 2S =M, (M= number of linear parameters) then the dimensions of A, X and B are P ×  

M, M ×  1 and P ×  1 respectively. Since P is always greater than M, there is no exact 



solution to equation (6.4). Instead a Least Square Estimate (LSE) of X, X
*
, is sought to 

minimize the squared error 
2

BAX − . X
*
 is computed using the pseudo-inverse of X: 

BAAAX TT 1* )( −=        (28) 

where T
A  is the transpose of A and TT AAA 1)( − is the pseudo-inverse of A where AA

T  is 

non-singular. Due to computational complexity, in ANFIS a sequential method is 

deployed as follows: 

 

Let the i-th row vector of matrix A defined in equation 6.4 be T
ia and i-th element of 

matrix B defined be T
ib , then X can be calculated iteratively using the following 

sequential formulae: 
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where iS  is often called the covariance matrix and the least squares estimate X
*
 is equal 

to XP. The initial condition to bootstrap (6.6) are XO=0 and SO=γ I, where γ is a positive 

large number and I is the identity matrix of dimension M ×  M. For a multi output ANFIS, 

(6.6) is still applicable except the ),( SIFoutput = will become a column vector. Each 

epoch of this hybrid learning procedure is composed of a forward pass and a backward 

pass. In the forward pass, we have to supply the input data and functional signals go 

forward to calculate each node output until the matrices A and B in (6.4) are obtained, and 

the parameters in 2S  are identified by the sequential least squares formulae given in (6.6). 

After identifying parameters in 2S , the functional signals keep going forward till the error 

measure is calculated. In the backward pass, the error rates propagate from the output 

layer to the input layers, and the parameters in 1S  are updated by the gradient method 

given by 
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where α  is the generic parameter, η  is a learning rate and E the error measure. For given 

fixed values of parameters in 1S , the parameters in 2S  thus found are guaranteed to be the 

global optimum point in the 2S  parameter space due to the choice of the squared error 

measure. 

 

The procedure mentioned above is mainly for offline learning version. However, the 

procedure can be modified for an online version by formulating the squared error 

measure as a weighted version that gives higher weighting factors to more recent data 

pairs. This amounts to the addition of a forgetting factor λ to (29). 
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The value of λ is between 0 and 1. The smaller the λ is, faster the effects of old data 

decay. However, a smaller λ sometimes causes numerical instability and should be 

avoided. 
 

2.4 DIFFERENCE BOOSTING NEURAL NETWORK (DBNN) 

DBNN is based on the Bayes principle that assumes the clustering of attribute values 

while boosting the attribute differences [25]. Boosting is an iterative process by which the 

network places emphasis on misclassified examples in the training set until it is correctly 

classified. The method considers the error produced by each example in the training set in 

turn and updates the connection weights associated to the probability P (Um|Ck) of each 

attribute of that example (Um is the attribute value and Ck a particular class in k number of 

different classes in the dataset). In this process, the probability density of identical 

attribute values flattens out and the differences get boosted up. Instead of the serial 

classifiers used in the AdaBoost algorithm, DBNN approach uses the same classifier 

throughout the training process. An error function is defined for each of the miss 

classified examples based on it distance from the computed probability of its nearest 

rival. The enhancement to the attribute is done such that the error produced by each 

example decides the correction to its associated weights. Since it is likely that more than 

one class would be sharing at least some of the same attribute values, this would lead to 

competitive update of their attribute weights, until either the classifier figures out the 

correct class or the number of iterations are completed.  The net effect of this would be 

that the classifier would become more and more dependent on the differences in the 

examples rather than their similarities. 
 

DBNN is basically a classification algorithm. It assigns output state labels to input 

patterns with some degree of confidence that it acquires from the training set. We 

modified the algorithm for time series prediction by approximating the time series by a 

class of slope predictions. A major limitation of such a revision is that the possible output 

states were limited by the number of output states seen in the training set. This is because 

the classification algorithm limits number of possible classes (slope values) to that it 

encountered during the training period. These limitations will be apparent in the DBNN 

outputs.  

3. EXPERIMENTATION SETUP AND RESULTS 

We considered 7 year’s months stock data for Nasdaq-100 Index and 4 year’s for NIFTY 

index. Our target is to develop efficient forecast models that could predict the index value 

of the following trade day based on the opening, closing and maximum values of the 

same on a given day. The training and test patterns for both the indices (scaled values) 

are illustrated in Figures 1 and 2. For the Nasdaq-100index the data sets were represented 



by the ‘opening value’, ‘low value’ and ‘high value’. NIFTY index data sets were 

represented by ‘opening value’, ‘low value’, ‘high value’ and ‘closing value’. We used 

the same training and test data sets to evaluate the different connectionist models. More 

details are reported in the following sections. Experiments were carried out on a Pentium 

IV, 1.5 GHz Machine with 256 MB RAM and the codes were executed using MATLAB 

(ANN, ANFIS) and C++ (SVM, DBNN). Test data was presented to the trained 

connectionist network and the output from the network was compared with the actual 

index values in the time series. 

 

The assessment of the prediction performance of the different connectionist paradigms 

were done by quantifying the prediction obtained on an independent data set. The 

maximum absolute percentage error (MAP) and mean absolute percentage error (MAPE) 

were used to study the performance of the trained forecasting model for the test data. 

MAP is defined as follows: 
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• ANN – LM algorithm 

We used a feedforward neural network with 4 input nodes and a single hidden layer 

consisting of 26 neurons. We used tanh-sigmoidal activation function for the hidden 

neurons. The training was terminated after 50 epochs and it took about 4 seconds to train 

each dataset.  

• Neuro-fuzzy training 

We used 3 triangular membership functions for each of the input variable and the 27 if-

then fuzzy rules were learned for the Nasdaq-100 index and 81 if-then fuzzy rules for the 

NIFTY index. Training was terminated after 12 epochs and it took about 3 seconds to 

train each dataset. 

• Support Vector Machines and Difference Boosting Neural Network 

Both SVM (Gaussian kernel with γ = 3) and DBNN took less than one second to learn the 

two data sets.  

 

 



• Performance and Results Achieved 

Table 1 summarizes the training and test results achieved for the two stock indices using 

the four different approaches. Figures 3 and 4 depict the test results for the one day ahead 

prediction of Nasdaq-100 index and NIFTY index respectively.   

 

Figure 3. Test results showing the performance of the different methods for modeling 

Nasdaq-100 index 

 

Figure 4. Test results showing the performance of the different methods for modeling 

NIFTY index 



 

 

 

 

Table 1:  Empirical comparison (training and test) of four learning methods 

SVM Neuro-Fuzzy ANN-LM DBNN 
 

Training results (RMSE) 

Nasdaq-100 0.02612 0.02210 0.02920 0.02929 

NIFTY 0.01734 0.01520 0.01435 0.0174 

 Testing results (RMSE) 

Nasdaq-100 0.01804 0.01830 0.02844 0.02864 

NIFTY 0.01495 0.01271 0.01227 0.02252 

Table 2:  Statistical analysis of four learning methods (test data)  

SVM Neuro-Fuzzy ANN-LM DBNN 
 

Nasdaq-100 

Correlation 

coefficient 0.9977 0.9976 0.9955 0.9940 

MAP 481.502 520.842 481.717 116.987 

MAPE 7.170 7.615 9.032 9.429 

 NIFTY 

Correlation 

coefficient 0.9968 0.9967 0.9968 0.9890 

MAP 72.53 40.37 73.94 37.99 

MAPE 4.416 3.320 3.353 5.086 



4.  CONCLUSIONS 

In this paper, we have demonstrated how the chaotic behavior of stock indices could be 

well represented by connectionist paradigms. Empirical results on the two data sets using 

four different models clearly reveal the efficiency of the proposed techniques. In terms of 

RMSE values, for Nasdaq-100 index, SVM performed marginally better than other 

models and for NIFTY index, ANN-LM approach gave the lowest generalization RMSE 

values. For both data sets, SVM has the lowest training time.  For Nasdaq-100 index 

SVM has the highest correlation coefficient and lowest value of MAPE but the lowest 

MAP value was for DBNN. Highest correlation coefficient was shared by SVM and 

ANN-LM approach for NIFTY index but the lowest MAPE value was for the neuro-

fuzzy approach. It is interesting to note that for predicting both index values, DBNN has 

the lowest MAP value. A low MAP value with DBNN is a crucial indicator for 

evaluating the stability of a market under unforeseen fluctuations. In the present example, 

the predictability assures the fact that the decrease in trade is only a temporary cyclic 

variation that is perfectly under control. In contrast, a chaotic fluctuation in the market 

would result in a larger MAP value and wider disagreement with the prediction by 

DBNN. Although similar would be the case with the other networks also, since DBNN 

directly correlates its performance with Bayesian probability estimates, it will be more 

apparent in its case. 

 

Our research was to predict the share price for the following trade day based on the 

opening, closing and maximum values of the same on a given day.  Our experimentation 

results indicate that the most prominent parameters that affect share prices are their 

immediate opening and closing values. The fluctuations in the share market are chaotic in 

the sense that they heavily depend on the values of their immediate forerunning 

fluctuations. Long-term trends exist, but are slow variations and this information is useful 

for long-term investment strategies. Our study focus on short term, on floor trades, in 

which the risk is higher.  However, the results of our study show that even in the 

seemingly random fluctuations, there is an underlying deterministic feature that is 

directly enciphered in the opening, closing and maximum values of the index of any day 

making predictability possible. 

 

Empirical results also shows that there are various advantages and disadvantages for the 

different techniques considered. Our future research will be oriented towards determining 

the optimal way to combine the different intelligent systems using an ensemble approach 

[12] so as to compliment the advantages and disadvantages of the different paradigms 

considered. 
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