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Abstract. Forecasting exchange rates is an important financial problem
that is receiving increasing attention especially because of its difficulty
and practical applications. This paper proposes a Hierarchical Radial
Basis Function Network (HiRBF) model for forecasting three major in-
ternational currency exchange rates. Based on the pre-defined instruction
sets, HRBF model can be created and evolved. The HRBF structure is
developed using the Extended Compact Genetic Programming (ECGP)
and the free parameters embedded in the tree are optimized by the De-
graded Ceiling Algorithm (DCA). Empirical results indicate that the
proposed method is better than the conventional neural network and
RBF networks forecasting models.

1 Introduction

Exchange rates are affected by many highly correlated economic, political and
even psychological factors. These factors interact in a very complex fashion. Ex-
change rate series exhibit high volatility, complexity and noise that result from
an elusive market mechanism generating daily observations [1]. Much research
effort has been devoted to exploring the nonlinearity of exchange rate data and to
develop specific nonlinear models to improve exchange rate forecasting, i.e., the
Autoregressive Random Variance (ARV) model [2], Autoregressive Conditional
Heteroscedasticity (ARCH) [3], self-exciting threshold autoregressive models [4].
There has been growing interest in the adoption of neural networks, fuzzy infer-
ence systems and statistical approaches for exchange rate forecasting problem
[5][13][14].

For a recent review of neural networks based exchange rate forecasting, please
consult [7]. The input dimension (i.e. the number of delayed values for prediction)
and the time delay (i.e. the time interval between two time series data) are two
critical factors that affect the performance of neural networks. The selection of
dimension and the number of time delays has great significance in time series
prediction.



Hierarchical neural networks consist of multiple neural networks assembled
in different level or cascade architecture. Mat Isa et al. used Hierarchical Radial
Basis Function (HiRBF) to increase RBF performance in diagnosing cervical
cancer [17]. HiRBF cascading together two RBF networks, where both networks
have different structure but using the same learning algorithms. The first net-
work classifies all data and performs a filtering process to ensure that only certain
attributes to be fed to the second network. The study shows that HiRBF per-
forms better then the single RBF model. HiRBF has been proved effective in
the reconstruction of smooth surfaces from sparse noisy data points [18]. In or-
der to improve the model generalization performance, a selective combination of
multiple neural networks by using Bayesian method was proposed in [19].

In this paper, an automatic method for constructing HiRBF network is pro-
posed. Based on the pre-defined instruction sets, a HiRBF network can be cre-
ated and evolved. The HiRBF network also allows input variables selection. In
our previous studies, in order to optimize Flexible Neural Tree (FNT) the hier-
archical structure of FNT was evolved using Probabilistic Incremental Program
Evolution algorithm (PIPE) [8][9] and Ant Programming with specific instruc-
tions. In this research, the hierarchical structure is evolved using the Extended
Compact Genetic Programming (ECGP), a tree-structure based evolutionary
algorithm. The fine tuning of the parameters encoded in the structure is accom-
plished using the degraded ceiling algorithm [16]. The proposed method inter-
leaves both optimizations. The novelty of this paper is in the usage of HiRBF
model for selecting the important inputs and/or time delays and for forecasting
foreign exchange rates.

2 The Hierarchical RBF Model

A function set F and a terminal instruction set T used for generating a hierarchi-
cal RBF model are described as S = F

⋃
T = {+2,+3, . . . ,+N}

⋃{x1, . . . , xn},
where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i argu-
ments. x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments.
The output of a non-leaf node is calculated as a RBF neural network model (see
Fig.1). From this point of view, the instruction +i is also called a basis function
operator with i inputs.

The basis function operator is shown in Fig.1(left). In general, the basis
function networks can be represented as

y =
m∑

i=1

ωiψi(x; θ) (1)

where x ∈ Rn is input vector, ψi(x; θ) is ith basis function, and ωi is the corre-
sponding weights of ith basis function and θ is the parameter vector used in the
basis functions. In this research, Gaussian radial basis functions are used,

ψi(x; θ) =
n∏

j=1

exp(−‖ xj − bj ‖2
aj

2
) (2)
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Fig. 1. A RBF network (left), a hierarchical RBF network (middle), and a tree-
structural representation of the HRBF (right)

and the number of basis functions used in hidden layer is same with the number
of inputs, that is, m = n.

In the creation process of HiRBF tree, if a nonterminal instruction, i.e.,
+i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly generated and used
for representing the connection strength between the node +i and its children.
In addition, 2 × n2 adjustable parameters ai and bi are randomly created as
Gaussian radial basis function parameters. The output of the node +i can be
calculated by using (1) and (2). The overall output of HiRBF tree can be com-
puted from left to right by depth-first method, recursively.
Tree Structure Optimization. Finding an optimal or near-optimal HiRBF
is formulated as a product of evolution. In our previously studies, the Genetic
Programming (GP), Probabilistic Incremental Program Evolution (PIPE) have
been explored for structure optimization of the FNT [8][9]. In this paper, the
Extended Compact Genetic Programming (ECGP) [11] is employed to find an
optimal or near-optimal HiRBF structure.

ECGP is a direct extension of ECGA to the tree representation which is based
on the PIPE prototype tree. In ECGA, Marginal Product Models (MPMs) are
used to model the interaction among genes, represented as random variables,
given a population of Genetic Algorithm individuals. MPMs are represented as
measures of marginal distributions on partitions of random variables. ECGP is
based on the PIPE prototype tree, and thus each node in the prototype tree
is a random variable. ECGP decomposes or partitions the prototype tree into
sub-trees, and the MPM factorises the joint probability of all nodes of the proto-
type tree, to a product of marginal distributions on a partition of its sub-trees.
A greedy search heuristic is used to find an optimal MPM mode under the
framework of minimum encoding inference. ECGP can represent the probability
distribution for more than one node at a time. Thus, it extends PIPE in that
the interactions among multiple nodes are considered.
Parameter Optimization with Degraded Ceiling Algorithm. Simulated
annealing is one of the most widely studied local search meta-heuristics. It was
proposed as a general stochastic optimization technique in 1983 [15] and has been
applied to solve a wide range of problems including the weights optimization of



Set the initial solution S

Calculate initial fitness function f(s)

Initial ceiling B=f(s)

Specify input parameter dB

While not some stopping condition do

    define neighbourhood N(s)

    Randomly select the candidate solution s* in N(s)

    If ( f(s*) < f(s) )   or  ( f(s*) <= B )

    Then accept s* 

Fig. 2. The Degraded ceiling algorithm

a neural network. The basic ideas of the simulated annealing search are that it
accepts worse solutions with a probability p = e−

δ
T , where δ = f(s∗)− f(s), the

s and s∗ are the old and new solution vectors, f(s) denotes the cost function, the
parameter T denotes the temperature in the process of annealing. Originally it
was suggested to start the search from a high temperature and reduce it to the
end of the process by an equation: Ti+1 = Ti−Ti∗β. However, the cooling rate β
and initial value of T should be carefully selected since it is problem dependent.

The degraded ceiling algorithm also keeps the acceptance of worse solutions
but with a different manner [16]. It accepts every solution whose objective func-
tion is less than or equal to the upper limit B, which is monotonically decreased
during the search. The procedure for the degraded ceiling algorithm is given in
Fig.2.
Procedure of the General Learning Algorithm. The general learning pro-
cedure for constructing the HiRBF network can be described as follows.

1) Create an initial population randomly (HiRBF trees and its corresponding
parameters);

2) Structure optimization is achieved by using ECGP algorithm;
3) If a better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization is achieved by the DCA algorithm as described in

subsection 2. In this stage, the architecture of HiRBF model is fixed, and it
is the best tree developed during the end of run of the structure search. The
parameters (weights and flexible activation function parameters) encoded in
the best tree formulate a particle.

5) If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step 6); otherwise go
to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise go
to step 2).

Variable Selection using Hierarchical RBF Paradigms. It is often a diffi-
cult task to select important variables for a classification or regression problem,
especially when the feature space is large. Conventional RBF neural network
usually cannot do this. In the perspective of hierarchical RBF framework, the
nature of model construction procedure allows the HiRBF to identify important



input features in building an HiRBF model that is computationally efficient and
effective. The mechanisms of input selection in the HiRBF constructing proce-
dure are as follows. (1) Initially the input variables are selected to formulate the
HiRBF model with same probabilities; (2) The variables which have more con-
tribution to the objective function will be enhanced and have high opportunity
to survive in the next generation by a evolutionary procedure; (3) The evolu-
tionary operators i.e., crossover and mutation, provide a input selection method
by which the HiRBF should select appropriate variables automatically.

3 Exchange Rates Forecasting Using HiRBF Paradigms

3.1 The Data Set

We used three different datasets in our forecast performance analysis. The data
used are daily forex exchange rates obtained from the Pacific Exchange Rate Ser-
vice [12], provided by Professor Werner Antweiler, University of British Columbia,
Vancouver, Canada. The data comprises of the US dollar exchange rate against
Euros, Great Britain Pound (GBP) and Japanese Yen (JPY). We used the daily
data from 1 January 2000 to 31 October 2002 as training data set, and the
data from 1 November 2002 to 31 December 2002 as evaluation test set or
out-of-sample datasets (partial data sets excluding holidays), which are used
to evaluate the good or bad performance of the predictions, based on evaluation
measurements.

The forecasting evaluation criteria used is the normalized mean squared error
(NMSE),

NMSE =
∑N

t=1(yt − ŷt)2∑N
t=1(yt − ȳt)2

=
1
σ2

1
N

N∑
t=1

(yt − ŷt)2, (3)

where yt and ŷt are the actual and predicted values, σ2 is the estimated variance
of the data and ȳt the mean.

3.2 Feature/Input Selection with HiRBF

It is often a difficult task to select important variables for a forecasting or clas-
sification problem, especially when the feature space is large. A fully connected
NN classifier usually cannot do this. In the perspective of HiRBF framework, the
nature of model construction procedure allows the HiRBF to identify important
input features in building a forecasting model that is computationally efficient
and effective. The mechanisms of input selection in the HiRBF constructing pro-
cedure are as follows. (1) Initially the input variables are selected to formulate
the HiRBF model with same probabilities; (2) The variables which have more
contribution to the objective function will be enhanced and have high oppor-
tunity to survive in the next generation by a evolutionary procedure; (3) The
evolutionary operators provide a input selection method by which the HiRBF
should select appropriate variables automatically.
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Fig. 3. The evolved HRBF trees for forecasting euros (left), British pounds (middle)
and Japanese yen (right).

Table 1. Forecast performance evaluation for the three exchange rates (NMSE for
testing)

Exchange rate Euros British Pounds Japanese Yen

MLFN [13] 0.5534 0.2137 0.2737

ASNN [13] 0.1254 0.0896 0.1328

RBF-NN 0.1130 0.0852 0.1182

HRBF-NN (This paper) 0.0240 0.0212 0.0095

3.3 Experimental Results

For simulation, the five-day-ahead data sets are prepared for constructing HiRBF
models. A HiRBF model was constructed using the training data and then the
model was used on the test data set. The instruction sets used to create an
optimal HiRBF forecaster is S = F

⋃
T= {+2, +3}

⋃{x1, x2, x3, x4, x5}. Where
xi(i = 1, 2, 3, 4, 5) denotes the 5 input variables of the forecasting model.

The optimal HiRBF models evolved for three major internationally traded
currencies: British pounds, euros and Japanese yen are shown in Figure 3. It
should be noted that the important features for constructing the HiRBF models
were formulated in accordance with the procedure mentioned in the previous
section.

For comparison purpose, three single-stage RBF networks are also employed
with structure of {5-10-1} for forecasting three major internationally traded cur-
rencies. The forecast performances of a traditional multi-layer feed-forward net-
work (MLFN) model and an adaptive smoothing neural network (ASNN) model
are also shown in Table 1. The actual daily exchange rates and the predicted
ones for three major internationally traded currencies are shown in Figure 4.
From Tables 1, it is observed that the proposed HiRBF forecast models are bet-
ter than the considered neural networks models for three major internationally
traded currencies.
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Fig. 4. The actual exchange rate and predicted ones for training and testing data set.

4 Conclusions

In this paper, we presented a HiRBF model for forecasting three major interna-
tional currency exchange rates. We have demonstrated that the evolved HiRBF
forecasting model may provide better forecasts than the traditional MLFN fore-
casting model, the ASNN forecasting model and a traditional single RBF net-
work. The comparative evaluation is based on a statistical measures (NMSE).
Our experimental analyses reveal that the NMSE for three currencies using the
HiRBF model are significantly better than those using the MLFN model, the
ASNN model and the RBF model. This implies that the proposed HiRBF model
can be used as a feasible solution for exchange rate forecasting.
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