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Abstract

Soft computing techniques are increasingly being used for problem solving. This paper addresses

using an ensemble approach of different soft computing and hard computing techniques for intrusion

detection. Due to increasing incidents of cyber attacks, building effective intrusion detection systems

are essential for protecting information systems security, and yet it remains an elusive goal and a

great challenge. We studied the performance of Artificial Neural Networks (ANNs), Support Vector

Machines (SVMs) and Multivariate Adaptive Regression Splines (MARS). We show that an

ensemble of ANNs, SVMs and MARS is superior to individual approaches for intrusion detection in

terms of classification accuracy.
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1. Introduction

This paper concerns intrusion detection and the related issue of identifying a good

detection mechanism. Intrusion detection is a problem of great significance to critical

infrastructure protection owing to the fact that computer networks are at the core of the

nation’s operational control. This paper summarizes our current work to build intrusion

detection systems (IDSs) using Artificial Neural Networks (ANNs) (Hertz et al., 1991),

Support Vector Machines (SVMs) (Joachims, 1998), Multivariate Adaptive Regression

Splines (MARS) (Friedman, 1991) and the ensemble of different soft computing

techniques. Since the ability of a good detection technique gives more accurate results, it is
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critical for intrusion detection in order for the IDS to achieve maximal performance.

Therefore, we study different intelligent computing techniques and also their ensemble for

building models based on DARPA intrusion detection data shown in Fig. 1.

Since most of the intrusions can be uncovered by examining patterns of user

activities, many IDSs have been built by utilizing the recognized attack and misuse

patterns that can classify a user’s activity as normal or abnormal (attack). Several

intelligent techniques including but not limited to ANNs, SVMs, Petri nets, and data

mining techniques are being used to build IDSs. In our recent work, SVMs are found

to be superior to ANNs in many important respects of intrusion detection (Mukkamala

et al., 2002). In this paper, we will concentrate on using the ensemble of SVMs,

MARS and ANNs with different training functions to achieve better classification

accuracies. The data we used in our experiments originated from MIT’s Lincoln Lab.

It was developed for IDS evaluations by DARPA and is considered a benchmark for

intrusion detection evaluations (Kendall, 1998; Webster, 1998).

We performed experiments to classify each of the five classes (normal, probe,

denial of service (DoS), user to super-user, and remote to local) of patterns in the

DARPA data. It is shown that using the ensemble of different artificial intelligent

techniques for classification gives good accuracies.

In the rest of the paper, a brief introduction to related work in the field of intrusion

detection is given in Section 2. A brief introduction to the data we used is given in Section

3. In Section 4 we describe the theoretical aspects of ANNs, SVMs, and MARS. Ensemble

of soft computing techniques is described in Section 5. In Section 6 we present the

experimental results of ANNs, SVMs, MARS and their ensemble. In Section 7, we

summarize our results.

Fig. 1. Intrusion detection data distribution.
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2. Related work

Identifying unauthorized use, misuse and attacks on information systems is defined as

intrusion detection (Denning, 1987; Kumar and Spafford, 1994a). The most popular way

to detect intrusions has been done by using audit data generated by operating systems and

by networks. Since almost all activities are logged on a system, it is possible that a manual

inspection of these logs would allow intrusions to be detected. It is important to analyze

the audit data even after an attack has occurred, for determining the extent of damage

occurred, this analysis helps in attack trace back and also helps in recording the attack

patterns for future prevention of such attacks. An IDS can be used to analyze audit data for

such insights. This makes IDS a valuable real-time detection and prevention tool as well as

a forensic analysis tool.

Soft computing techniques are being widely used by the IDS community due to their

generalization capabilities that help in detecting know intrusions and unknown intrusions

or the attacks that have no previously described patterns. Earlier studies have utilized a

rule-based approach for intrusion detection, but had a difficulty in identifying new attacks

or attacks that had no previously describe patterns (Lunt et al., 1992; Ilgun, 1993;

Anderson et al., 1995; Porras and Neumann, 1997). Lately the emphasis is being shifted to

learning by examples and data mining paradigms. Neural networks have been extensively

used to identify both misuse and anomalous patterns (Debar and Dorizzi, 1992; Debar

et al., 1992; Ryan et al., 1997; Cannady, 1998; Mukkamala et al., 2001). Recently kernel

based methods, SVMs and their variants are being proposed to detect intrusions. Several

researchers proposed data mining techniques to identify key patterns that help in detecting

intrusions (Stolfo et al., 2000; Jianxiong and Bridges, 2000; Mukkamala and Sung, 2003).

Distributed agent technology is being proposed by a few researchers to overcome the

inherent limitations of the client-server paradigm and to detect intrusions in real time

(Crosbie and Spafford, 1995; Prodromidis and Stolfo, 1999; Dasgupta, 1999; Helmer et al.,

2003).

2.1. Misuse detection

The idea of misuse detection is to represent attacks in the form of a pattern or a

signature so that the same attack can be detected and prevented in future. These systems

can detect many or all known attack patterns (Kumar and Spafford, 1994b), but they are of

little use for detecting naive attack methods. The main issues of misuse detection is how to

build signatures that include possible signatures of attacks build a signature that includes

all possible variations of the pertinent attack to avoid false negatives, and how to build

signatures that do not match non-intrusive activities to avoid false positives.

2.2. Anomaly detection

The idea here is that if we can establish a normal activity profile for a system, in theory

we can flag all system states varying from the established profile as intrusion attempts.

However, if the set of intrusive activities is not identical to the set of anomalous activities,

the situation becomes more interesting instead of being exactly the same, we find few
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interesting possibilities. Anomalous activities that are not intrusive are flagged as

intrusive, though they are false positives. Actual intrusive activities that go undetected are

called false negatives. This is a serious issue, and is far more serious than the problem of

false positives. One of the main issues of anomaly detection systems is the selection of

threshold levels so that neither of the above problems is unreasonably magnified. Anomaly

detection is usually computationally expensive because of the overhead of keeping track

of and possibly updating several system profiles. Recent proposed system Learning Rules

for Anomaly Detection (LEARD) discovers relationships among attributes in order to

model application protocols (Mahoney and Chan, 2003; Chan et al., 2003).

3. Intrusion dataset

In the 1998 DARPA intrusion detection evaluation program, an environment was set up

to acquire raw TCP/IP dump data for a network by simulating a typical US Air Force LAN.

The LAN was operated like a real environment, but being blasted with multiple attacks.

For each TCP/IP connection, 41 various quantitative and qualitative features were

extracted (Lee and Stolfo, 2000). Of this database a subset of 494021 data were used, of

which 20% represent normal patterns. The four different categories of attack patterns are

as follows.

3.1. Probing

Probing is a class of attacks where an attacker scans a network to gather information or find

known vulnerabilities. An attacker with a map of machines and services that are available on a

network can use the information to look for exploits. There are different types of probes: some

of them abuse the computer’s legitimate features; some of them use social engineering

techniques. This class of attacks is the most commonly heard and requires very little technical

expertise. Different types of probe attacks are shown in Table 1.

3.2. Denial of service attacks

DoS is a class of attacks where an attacker makes some computing or memory resource

too busy or too full to handle legitimate requests, thus denying legitimate users access to a

machine There are different ways to launch DoS attacks: by abusing the computers

Table 1

Probe attacks

Attack type Service Mechanism Effect of the attack

Ipsweep Icmp Abuse of feature Identifies active machines

Mscan Many Abuse of feature Looks for known vulnerabilities

Nmap Many Abuse of feature Identifies active ports on a machine

Saint Many Abuse of feature Looks for known vulnerabilities

Satan Many Abuse of feature Looks for known Vulnerabilities
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legitimate features; by targeting the implementations bugs; or by exploiting the system’s

misconfigurations. DoS attacks are classified based on the services that an attacker renders

unavailable to legitimate users. Some of the popular attack types are shown in Table 2.

3.3. User to root attacks

User to root exploits are a class of attacks where an attacker starts out with access to a

normal user account on the system and is able to exploit vulnerability to gain root access to

the system. Most common exploits in this class of attacks are regular buffer overflows,

which are caused by regular programming mistakes and environment assumptions. Please

refer to Table 3 for some of the attack types in this category.

3.4. Remote to user attacks

A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a

machine over a network, then exploits machine’s vulnerability to illegally gain local

access as a user. There are different types of R2U attacks: the most common attack in this

class is done using social engineering. Some of the R2U attacks are presented in Table 4.

Table 2

DoS attacks

Attack type Service Mechanism Effect of the attack

Apache2 http Abuse Crashes httpd

Back http Abuse/Bug Slows down server response

Land http Bug Freezes the machine

Mail bomb N/A Abuse Annoyance

SYN flood TCP Abuse Denies service on one or more ports

Ping of death Icmp Bug None

Process table TCP Abuse Denies new processes

Smurf Icmp Abuse Slows down the network

Syslogd Syslog Bug Kills the Syslogd

Teardrop N/A Bug Reboots the machine

Udpstrom Echo/Chargen Abuse Slows down the network

Table 3

User to super-user attacks

Attack Type Service Mechanism Effect of the attack

Eject User session Buffer overflow Gains root shell

Ffbconfig User session Buffer overflow Gains root shell

Fdformat User session Buffer overflow Gains root shell

Loadmodule User session Poor environment sanitation Gains root shell

Perl User session Poor environment sanitation Gains root shell

Ps User session Poor temp file management Gains root shell

Xterm User session Buffer overflow Gains root shell
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4. Soft computing and hard computing paradigms

Soft computing was first proposed by Zadeh to construct new generation

computationally intelligent hybrid systems consisting of neural networks, fuzzy inference

system, approximate reasoning and derivative free optimization techniques. It is well

known that the intelligent systems, which can provide human like expertise such as

domain knowledge, uncertain reasoning, and adaptation to a noisy and time varying

environment, are important in tackling practical computing problems. In contrast with

conventional Artificial Intelligence (AI) techniques, which only deal with precision,

certainty and rigor the guiding principle of hybrid systems is to exploit the tolerance for

imprecision, uncertainty, low solution cost, robustness, partial truth to achieve tractability,

and better rapport with reality.

4.1. Artificial neural networks

The ANN methodology enables us to design useful non-linear systems accepting large

numbers of inputs, with the design based solely on instances of input–output relationships.

ANN (in the present context, multilayer, feedforward type networks) consists of a

collection of highly interconnected processing elements to perform an input–output

transformation. The actual transformation is determined by the set of weights associated

with the links connecting elements. The neural network gains knowledge about the

transformation to be performed by iteratively learning from a sufficient training set of

samples or input–output training pairs. A well-trained network can perform the

transformation correctly and also possess some generalization capability.

Since multilayer feedforward ANNs are capable of making multiclass classifications,

an ANN is employed to perform the intrusion detection, using the same training and

testing sets as those for other connectionist paradigms. This Section briefly introduces to

three best-performed neural network training algorithms for intrusion detection (Demuth

and Beale, 2000).

Table 4

Remote to user attacks

Attack type Service Mechanism Effect of the attack

Dictionary Telnet, rlogin, pop, ftp, imap Abuse feature Gains user access

Ftp-write Ftp Misconfig. Gains user access

Guest Telnet, rlogin Misconfig. Gains user access

Imap Imap Bug Gains root access

Named Dns Bug Gains root access

Phf Http Bug Executes commands as http user

Sendmail Smtp Bug Executes commands as root

Xlock Smtp Misconfig. Spoof user to obtain password

Xnsoop Smtp Misconfig. Monitor key stokes remotely
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4.1.1. Resilient back propagation (RP)

The purpose of the resilient backpropagation training algorithm is to eliminate the

harmful effects of the magnitudes of the partial derivatives. Only the sign of the derivative

is used to determine the direction of the weight update; the magnitude of the derivative has

no effect on the weight update. The size of the weight change is determined by a separate

update value. The update value for each weight and bias is increased by a factor whenever

the derivative of the performance function with respect to that weight has the same sign for

two successive iterations. The update value is decreased by a factor whenever the

derivative with respect that weight changes sign from the previous iteration. If the

derivative is zero, then the update value remains the same. Whenever the weights are

oscillating the weight change will be reduced. If the weight continues to change in the

same direction for several iterations, then the magnitude of the weight change will be

increased (Riedmiller and Braun, 1993).

4.1.2. Scaled conjugate gradient algorithm (SCG)

Moller (1993)) introduced the SCG algorithm as a way of avoiding the complicated line

search procedure of conventional conjugate gradient algorithm (CGA). According to the

SCGA, the Hessian matrix is approximated by

E00ðwkÞpk ¼
E0ðwk þ skpkÞ2 E0ðwkÞ

sk

þ lkpk ð1Þ

where E0 and E00 are the first and second derivative information of global error function

EðwkÞ: The other terms pk;sk and lk represent the weights, search direction, parameter

controlling the change in weight for second derivative approximation and parameter for

regulating the indefiniteness of the Hessian. In order to get a good quadratic approximation

of E; a mechanism to raise and lower lk is needed when the Hessian is positive definite.

Detailed step-by-step description can be found in Moller (1993).

4.1.3. One-step-secant algorithm (OSS)

Quasi-Newton method involves generating a sequence of matrices GðkÞ that represents

increasingly accurate approximations to the inverse Hessian ðH21Þ: Using only the first

derivative information of E (Bishop, 1995), the updated expression is as follows:

Gðkþ1Þ ¼ GðkÞ þ
ppT

pTv
2

ðGðkÞvÞvTGðkÞ

vTGðkÞv
þ ðvTGðkÞvÞuuT ð2Þ

where

p ¼ wðkþ1Þ 2 wðkÞ
; v ¼ gðkþ1Þ 2 gðkÞ

; u ¼
p

pTv
2

GðkÞv

vTGðkÞv
ð3Þ

and T represents transpose of a matrix. The problem with this approach is the requirement

of computation and storage of the approximate Hessian matrix for every iteration. The

OSS is an approach to bridge the gap between the conjugate gradient algorithm and the

quasi-Newton (secant) approach. The OSS approach doesn’t store the complete Hessian

matrix; it assumes that at each iteration the previous Hessian was the identity matrix.
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This also has the advantage that the new search direction can be calculated without

computing a matrix inverse (Bishop, 1995).

4.2. Support vector machines

The SVM approach transforms data into a feature space F that usually has a huge

dimension. It is interesting to note that SVM generalization depends on the geometrical

characteristics of the training data, not on the dimensions of the input space (Joachims,

2000). Training a SVM leads to a quadratic optimization problem with bound constraints

and one linear equality constraint. Vapnik shows how training a SVM for the pattern

recognition problem leads to the following quadratic optimization problem (Vapnik,

1995).

Minimize : WðaÞ ¼ 2
Xl

i¼1

ai þ
1

2

Xl

i¼1

Xl

j¼1

yiyjaiajkðxi; xjÞ ð4Þ

Subject to

Xl

i¼1

yiai ;i : 0 # ai # C ð5Þ

where l is the number of training examples a is a vector of l variables and each component

ai corresponds to a training example ðxi; yiÞ: The solution of Eq. (4) is the vector ap for

which Eq. (4) is minimized and Eq. (5) is fulfilled.

4.3. Multivariate adaptive regression splines

Splines can be considered as an innovative mathematical process for complicated

curve drawings and function approximation. To develop a spline the X-axis is broken

into a convenient number of regions. The boundary between regions is also known as

a knot. With a sufficiently large number of knots, virtually any shape can be well

approximated. While it is easy to draw a spline in two-dimensions by keying on knot

locations (approximating using linear, quadratic or cubic polynomial, etc.),

manipulating the mathematics in higher dimensions is best accomplished using

basis functions. The MARS model is a regression model using basis functions as

predictors in place of the original data. The basis function transform makes it possible

to selectively blank out certain regions of a variable by making them zero, and allows

MARS to focus on specific sub-regions of the data. It excels at finding optimal

variable transformations and interactions, and the complex data structure that often

hides in high-dimensional data (Friedman, 1991).

Given the number of records in most data sets, it is infeasible to approximate the

function y ¼ f ðxÞ by summarizing y in each distinct region of x: For some variables, two

regions may not be enough to track the specifics of the function. If the relationship of y to

some x’s is different in three or four regions, for example, the number of regions requiring

examination is even larger than 34 billion with only 35 variables. Given that the number of

regions cannot be specified a priori, specifying too few regions in advance can have
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serious implications for the final model. A solution is needed that accomplishes

the following two criteria:

† judicious selection of which regions to look at and their boundaries

† judicious determination of how many intervals are needed for each variable

Given these two criteria, a successful method will essentially need to be adaptive to the

characteristics of the data. Such a solution will probably ignore quite a few variables

(affecting variable selection) and will take into account only a few variables at a time (also

reducing the number of regions). Even if the method selects 30 variables for the model, it

will not look at all 30 simultaneously. Such simplification is accomplished by a decision

tree at a single node, only ancestor splits are being considered; thus, at a depth of six levels

in the tree, only six variables are being used to define the node.

4.3.1. MARS smoothing, splines, knots selection and basis functions

To estimate the most common form, the cubic spline, a uniform grid is placed on the

predictors and a reasonable number of knots are selected. A cubic regression is then fit

within each region. This approach, popular with physicists and engineers who want

continuous second derivatives, requires many coefficients (four per region) to be

estimated. Normally, two constraints, which dramatically reduce the number of free

parameters, can be placed on cubic splines:

† curve segments must join,

† continuous first and second derivatives at knots (higher degree of smoothness)

Fig. 2 depicts a MARS spline with three knots. A key concept underlying the spline is

the knot. A knot marks the end of one region of data and the beginning of another. Thus,

the knot is where the behavior of the function changes. Between knots, the model could be

global (e.g. linear regression). In a classical spline, the knots are predetermined and evenly

spaced, whereas in MARS, the knots are determined by a search procedure. Only as many

knots as needed are included in a MARS model. If a straight line is a good fit, there will be

Fig. 2. MARS data estimation using spines and knots (actual data on the right).
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no interior knots. In MARS, however, there is always at least one ‘pseudo’ knot that

corresponds to the smallest observed value of the predictor (Steinberg et al., 1999).

Finding the one best knot in a simple regression is a straightforward search problem:

simply examine a large number of potential knots and choose the one with the best R2:

However, finding the best pair of knots requires far more computation, and finding the best

set of knots when the actual number needed is unknown is an even more challenging task.

MARS finds the location and number of needed knots in a forward/backward stepwise

fashion. A model which is clearly overfit with too many knots is generated first; then, those

knots that contribute least to the overall fit are removed. Thus, the forward knot selection

will include many incorrect knot locations, but these erroneous knots will eventually

(although this is not guaranteed), be deleted from the model in the backwards pruning step.

5. Ensemble of intelligent paradigms

Optimal linear combination of neural networks has been investigated and has found to

be very useful (Hashem, 1995). The optimal weights were decided based on the ordinary

least squares regression coefficients in an attempt to minimize the mean squared error. The

problem becomes more complicated when we have to optimize several other error

measures. In the case of intrusion detection, our task is to design a classifier, which could

give the best accuracy for each category of attack patterns. The first step is to carefully

construct the different connectional models to achieve the best generalization performance

for classifiers. Test data is then passed through these individual models and the

corresponding outputs are recorded. Suppose the classification performance given by

SVM, MARS, ANN (RP), ANN (SCG) and ANN (OSS) are an; bn; cn; dn and en;

respectively, and the corresponding desired value is xn: Our task is to combine an; bn; cn;

dn; and en so as to get the best output value that maximizes the classification accuracy. The

following ensemble approach was used. We used the majority voting approach in which

the detected class is the one where the majority of networks agreed. The approach is

depicted in Fig. 3.

Fig. 3. Ensemble approach to combine intelligent paradigms for IDS.
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6. Experiments

In our experiments, we perform five-class classification. The (training and testing) data

set contains 11,982 randomly generated points from the five classes, with the number of

data from each class proportional to its size, except that the smallest class is completely

included. The normal data belongs to class 1, probe belongs to class 2, DoS belongs to

class 3, user to super-user belongs to class 4, remote to local belongs to class 5. A different

randomly selected set of 6890 points of the total data set (11,982) is used for testing

different intelligent techniques.

6.1. Experiments using neural networks

The same data set described in Section 2 is being used for training and testing different

neural network algorithms. The set of 5092 training data is divided in to five classes:

normal, probe, DoS attacks, user to super-user and remote to local attacks. Where the

attack is a collection of 22 different types of instances that belong to the four classes

described in Section 2, and the other is the normal data. In our study we used two hidden

layers with 20 and 30 neurons each and the networks were trained using RP, SCG and OSS

algorithms.

The network was set to train until the desired mean square error of 0.001 was met.

During the training process the goal was met at 303 epochs for SCG, 66 epochs for

RP and 638 epochs for OSS.

As multilayer feedforward networks are capable of multiclass classifications, we

partition the data into five classes (Normal, Probe, DoS, and User to Root and Remote to

Local). SCG performed with an accuracy of 95.25%; network using RP achieved an

accuracy of 97.04%; network using OSS performed with an accuracy of 93.60%.

The top-left entry of Table 5 shows that 1394 of the actual ‘normal’ test set were

detected to be normal; the last column indicates that 99.6% of the actual ‘normal’ data

points were detected correctly. In the same way, for ‘Probe’ 649 of the actual ‘attack’

test set were correctly detected; the last column indicates that 92.7% of the actual

‘Probe’ data points were detected correctly. The bottom row shows that 96.4% of the

test set said to be ‘normal’ indeed were ‘normal’ and 85.7% of the test set classified, as

‘probe’ indeed belongs to Probe. The overall accuracy of the classification is 97.04 with

a false positive rate of 2.76% and false negative rate of 0.20%.

Table 5

Performance of the best neural network training algorithm (RP)

Normal Probe DoS U2Su R2L %

Normal 1394 5 1 0 0 99.6

Probe 49 649 2 0 0 92.7

DoS 3 101 4096 2 0 97.5

U2Su 0 1 8 12 4 48.0

R2L 0 1 6 21 535 95.0

% 96.4 85.7 99.6 34.3 99.3
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6.2. Experiments using support vector machines

The data set described in Section 4 is being used to test the performance of SVMs. Note

the same training test (5092) used for training the neural networks and the same testing test

(6890) used for testing the neural networks are being used to validate the performance.

Because SVMs are only capable of binary classifications, we will need to employ five

SVMs, for the five-class classification problem in intrusion detection, respectively. We

partition the data into the two classes of ‘Normal’ and ‘Rest’ (Probe, DoS, U2Su, R2L)

patterns, where the Rest is the collection of four classes of attack instances in the data set.

The objective is to separate normal and attack patterns. We repeat this process for all

classes. Training is done using the radial bias function (RBF) kernel option; an important

point of the kernel function is that it defines the feature space in which the training set

examples will be classified. Table 6 summarizes the results of the experiments.

6.3. Experiments using MARS

We use five basis functions and selected a setting of minimum observation between

knots as 10. The MARS training mode is being set to the lowest level to gain higher

accuracy rates. Five MARS models are employed to perform five-class classifications

(normal, probe, DoS, user to root and remote to local). We partition the data into the two

classes of ‘Normal’ and ‘Rest’ (Probe, DoS, U2Su, R2L) patterns, where the Rest is the

collection of four classes of attack instances in the data set. The objective is to separate

normal and attack patterns. We repeat this process for all classes. Table 7 summarizes the

results of MARS.

Table 6

Performance of SVMs for five-class classifications

Class Training time (s) Testing time (s) Accuracy (%)

Normal 7.66 1.26 99.55

Probe 49.13 2.10 99.70

DoS 22.87 1.92 99.25

U2Su 3.38 1.05 99.87

R2L 11.54 1.02 99.78

Table 7

Performance of MARS on test dataset

Class Accuracy (%)

Normal 96.08

Probe 92.32

DoS 94.73

U2Su 99.71

R2L 99.48
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6.4. Experiments using ensemble of intelligent paradigms

Different intelligent paradigms are carefully constructed to achieve the best

generalization performance for classifiers. Test data is then passed through these

individual models and the corresponding outputs are recorded. Table 8 summarizes the test

results achieved for the five-class classification using three different neural networks,

SVMs, multivariate regression splines and the ensemble of all the different paradigms.

7. Summary and conclusions

Our research has clearly shown the importance of using ensemble approach for

modeling IDSs. An ensemble helps to indirectly combine the synergistic and

complementary features of the different learning paradigms without any complex

hybridization. Since all the considered performance measures could be optimized such

systems could be helpful in several real world applications.

† A number of observations and conclusions are drawn from the results reported:

† The ensemble approach out performs both SVMs, MARS and ANNs in the important

respect of classification accuracies for all the five classes.

† If proper intelligent paradigms are chosen, their ensemble might help in gaining 100%

classification accuracies.

† SVMs outperform MARS and ANNs in the important respects of scalability (SVMs can

train with a larger number of patterns, while would ANNs take a long time to train or

fail to converge at all when the number of patterns gets large); training time and running

time (SVMs run an order of magnitude faster); and prediction accuracy.

† Resilient back propagation achieved the best performance among the neural

networks in terms of accuracy (97.04%) and training (67 epochs).

We note, however, that the difference in accuracy figures tend to be very small and may

not be statistically significant, especially in view of the fact that the five classes of patterns

differ in their sizes tremendously. More definitive conclusions can only be made after

analyzing more comprehensive sets of network traffic data.

Table 8

Performance comparison of testing for five-class classifications

Class Accuracy (%)

SVM RP SCG OSS Ensemble

of ANN

MARS Ensemble of ANN,

SVM and MARS

Normal 98.42 99.57 99.57 99.64 99.64 99.71 99.71

Probe 98.57 92.71 85.57 92.71 98.14 56.42 99.85

DoS 99.45 97.47 72.01 91.78 99.61 96 99.97

U2Su 64.00 48.00 0.00 16.00 56.00 40.00 76.00

R2L 97.33 95.73 98.57 97.15 99.46 98.75 100.00

Overall 98.85 97.09 80.89 93.64 99.3 92.75 99.82

S. Mukkamala et al. / Journal of Network and Computer Applications 28 (2005) 167–182 179



Acknowledgements

Support for this research received from ICASA (Institute for Complex Additive

Systems Analysis, a division of New Mexico Tech) and a US Department of Defense and

NSF IASP capacity building grant is gratefully acknowledged.

References

Anderson D, Lunt TF, Javitz H, Tamaru A,, Valdes A. Detecting unusual program behavior using the stastistical

component of the next-generation intrusion detection expert system (NIDES). SRI-CSL-95-06, Menlo Park,

CA: SRI International; 1995.

Bishop CM. Neural networks for pattern recognition. Oxford Press; 1995.

Cannady J. Artificial neural networks for misuse detection. National Information Systems Security Conference;

1998. p. 368–81.

Chan PK, Mahoney M, Arshad M. Learning rules and clusters for anomaly detection in network traffic. Managing

cyber threats: issues, approaches and challenges, Dordrecht: Kluwer; 2004. In press.

Crosbie M, Spafford EH. Defending a computer system using autonomous agents. Technical Report CSD-TR-95-

022; 1995.

Dasgupta D. Immunity-based intrusion detection system: a general framework. Proceedings of 22nd National

Information Systems Security Conference (NISSC); 1999. p. 147–60.

Debar H, Dorizzi B. An application of a recurrent network to an intrusion detection system. Proceedings of the

International Joint Conference on Neural Networks; 1992. p. 78–83.

Debar H, Becke B, Siboni D. A neural network component for an intrusion detection system. Proceedings of the

IEEE Computer Society Symposium on Research in Security and Privacy; 1992. p. 240–50.

Demuth H, Beale M. Neural network toolbox user’s guide. Natick, MA: MathWorks, Inc; 2000.

Denning D. An intrusion-detection model. IEEE Trans Software Engng 1987;SE-13(2):222–32.

Friedman JH. Multivariate adaptive regression splines. Anal Stat 1991;19:1–141.

Hashem S. Optimal linear combination of neural networks. Neural Network 1995;10(3):792–994.

Helmer G, Wong J, Honavar V, Miller L. Lightweight agents for intrusion detection. J Syst Software 2003;

109–22.

Hertz J, Krogh A, Palmer RG. Introduction to the theory of neural computation. Reading, MA: Addison-Wesley;

1991.

Ilgun K. USTAT: a real-time intrusion detection system for UNIX. Proceedings of the 1993 Computer Society

Symposium on Research in Security and Privacy, Oakland, California, May 24–26, Los Alamitos, CA: IEEE

Computer Society Press; 1993. pp. 16–29.

Jianxiong L, Bridges SM. Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection. Int

J Intell Syst 2000;15(8):687–704.

Joachims T. Making large-scale SVM learning practical. LS8-Report, University of Dortmund; 1998.

Joachims T. SVMlight is an implementation of support vector machines (SVMs) in C. University of Dortmund,

Collaborative Research Center on Complexity Reduction in Multivariate Data (SFB475); 2000, http://ais.

gmd.de/, thorsten/svm_light.

Kendall K. A Database of computer attacks for the evaluation of intrusion detection systems. Master’s Thesis.

Massachusetts Institute of Technology; 1998.

Kumar S, Spafford EH. An application of pattern matching in intrusion detection. Technical Report CSD-TR-94-

013, Purdue University; 1994a.

Kumar S, Spafford EH. A pattern matching model for misuse intrusion detection. In Proceedings of the 17th

National Computer Security Conference; 1994b. p. 11–21.

Lee W, Stolfo SJ. A Framework for constructing features and models for intrusion detection systems. ACM Trans

Inf Syst Security 2000;3(4):227–61.

Lunt T, Tamaru A, Gilham F, Jagannathan R, Jalali C, Neumann PG, Javitz HS, Valdes A, Garvey TD. A real

time intrusion detection expert system (IDES)—Final Report. Menlo Park, CA: SRI International; 1992.

S. Mukkamala et al. / Journal of Network and Computer Applications 28 (2005) 167–182180

http://ais.gmd.de/~thorsten/svm_light
http://ais.gmd.de/~thorsten/svm_light
http://ais.gmd.de/~thorsten/svm_light


Mahoney M, Chan PK. An analysis of the 1999 DARPA/Lincoln laboratory evaluation data for network anomaly

detection. Sixth International Symposium on Recent Advances in Intrusion Detection; 2003. p. 220–37.

Moller AF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993;(6):

525–33.

Mukkamala S, Sung AH. Feature selection for intrusion detection using neural networks and support vector

machines. J Transport Res Board Natl Acad, Transport Res Record No 1822 2003;33–9.

Mukkamala S, Janowski G, Sung AH. Intrusion detection using neural networks and support vector machines.

Proceedings of Hybrid Information Systems Advances in Soft Computing, Heidelberg: Physica/Springer;

2001. ISBN 3790814806, p.121–38.

Mukkamala S, Janoski G, Sung AH. Intrusion detection using neural networks and support vector machines.

Proceedings of IEEE International Joint Conference on Neural Networks; 2002. p. 1702–07.

Porras A, Neumann PG. EMERALD: Event monitoring enabling responses to anomalous live disturbances. In:

Proceedings of the National Information Systems Security Conference; 1997. p. 353–65.

Prodromidis L, Stolfo SJ. Agent-based distributed learning applied to fraud detection. Technical Report CUCS-

014-99; 1999.

Riedmiller M, Braun H. A direct adaptive method for faster back propagation learning: the RPROP algorithm.

Proceedings of the IEEE International Conference on Neural Networks, San Francisco; 1993.

Ryan J, Lin M-J, Miikkulainen R. Intrusion detection with neural networks. Advances in neural information

processing systems 10, Cambridge, MA: MIT Press; 1997.

Steinberg D, Colla PL, Kerry M. MARS user guide. San Diego, CA: Salford Systems; 1999.

Stolfo J, Fan W, Lee W, Prodromidis A, Chan PK. Cost-based modeling and evaluation for data mining with

application to fraud and intrusion detection. Results from the JAM Project by Salvatore; 2000.

Vapnik V. The nature of statistical learning theory. New York: Springer; 1995.

Webster SE. The development and analysis of intrusion detection algorithms. S.M. Thesis. Massachusetts

Institute of Technology; 1998.

Zadeh LA. Roles of soft computing and fuzzy logic in the conception, design and deployment of information/

intelligent systems. In: Kaynak O, Zadeh LA, Turksen B, Rudas IJ, editors. Computational intelligence: soft

computing and fuzzy-neuro integration with applications; 1999. p. 1–9.

Srinivas Mukkamala is currently a doctoral candidate of the Computer Science Department of New Mexico

Tech. He is currently working in the areas of information assurance and security, applications of soft

computing and software security and has over 40 publications in the areas of information security. Srinivas

Mukkamala received his B.E. in Computer Science and Engineering from University of Madras in 1999, M.S.

in Computer Science form New Mexico Tech. He is currently a research associate and a student lead of the

information assurance group at New Mexico Tech.

Andrew H. Sung is currently Professor and Chairman of the Computer Science Department of New Mexico

Tech, and a founding coordinator of the school’s new Information Technology Program. He is also the

Associate Director for Education and Training of ICASA (Institute for Complex Additive Systems Analysis,

a statutory research division of New Mexico Tech performing work on information technology, information

assurance, and analysis and protection of critical infrastructures as complex interdependent systems). Andrew

Sung received his B.S. in Electrical Engineering from National Taiwan University in 1976, M.S. in

Mathematical Sciences from the University of Texas at Dallas in 1980, and Ph.D. in Computer Science from

the State University of New York at Stony Brook in 1984. He joined New Mexico Tech in 1987, and served as

the Computer Science department chair from 1988 to 1993, and again since January 2000. From 1984 to

1987, he was Assistant Professor of Computer Science at the University of Texas at Dallas.

S. Mukkamala et al. / Journal of Network and Computer Applications 28 (2005) 167–182 181


	Intrusion detection using an ensemble of intelligent paradigms
	Introduction
	Related work
	Misuse detection
	Anomaly detection

	Intrusion dataset
	Probing
	Denial of service attacks
	User to root attacks
	Remote to user attacks

	Soft computing and hard computing paradigms
	Artificial neural networks
	Support vector machines
	Multivariate adaptive regression splines

	Ensemble of intelligent paradigms
	Experiments
	Experiments using neural networks
	Experiments using support vector machines
	Experiments using MARS
	Experiments using ensemble of intelligent paradigms

	Summary and conclusions
	Acknowledgements
	References




