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Particle Swarm Optimization (PSO) is arguably one of the most popular nature-inspired
algorithms for real parameter optimization at present. The existing theoretical research
on PSO focuses on the issues like stability, convergence, and explosion of the swarm. How-
ever, all of them are based on the gbest (global best) communication topology, which usu-
ally is susceptible to false or premature convergence over multi-modal fitness landscapes.
The present standard PSO (SPSO 2007) uses an lbest (local best) topology, where a particle
is stochastically attracted not towards the best position found in the entire swarm, but
towards the best position found by any particle in its topological neighborhood. This article
presents a first step towards a probabilistic analysis of the particle interaction and informa-
tion exchange in an lbest PSO with variable random neighborhood topology (as found in
SPSO 2007). It addresses issues like the distribution of particles over neighborhoods, the
probability distributions of the social and cognitive terms in lbest model, and the explor-
ative power of the lbest PSO. It also presents a state-space model of the lbest PSO and
draws important conclusions regarding the stability and convergence of the particle
dynamics in the light of control theory.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The concept of particle swarm, although initially introduced for simulating human social behavior, has become very pop-
ular these days as an efficient means for intelligent search and optimization. The Particle Swarm Optimization (PSO)
[9,10,13,16], as it is called now, does not require any gradient information of the function to be optimized, uses only prim-
itive mathematical operators, and is conceptually very simple. Since its inception in 1995, PSO has attracted a great deal of
attention of the researchers all over the globe resulting into nearly uncountable number of variants of the basic algorithm,
theoretical and empirical investigations of the dynamics of the particles, parameter selection and control, and applications of
the algorithm to a wide spectrum of real world problems from diverse fields of science and engineering. For a comprehensive
knowledge on the foundations, perspectives, and applications of PSO see [1,2,8,10].

The first stability analysis of the particle dynamics was due to Clerc and Kennedy in 2002 [6]. F van den Bergh undertook
an independent theoretical analysis of the particle swarm dynamics in his Ph.D. thesis [27], published in the same year. In
[6], Clerc and Kennedy considered a deterministic approximation of the swarm dynamics by treating the random coefficients
as constants, and studied stable and limit cyclic behavior of the dynamics for the settings of appropriate values to its
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parameters. A more generalized stability analysis of particle dynamics based on Lyapunov stability theorems was under-
taken by Kadirkamanathan et al. [12]. Recently Poli in [22] analyzed the characteristics of a PSO sampling distribution
and explained how it changes over any number of generations, in the presence of stochasticity, during stagnation. Some
other significant works towards the theoretical understanding of PSO can be found in [23,25,5,11]. However, to the best
of our knowledge, all the theoretical research works including the above-mentioned studies on PSO are centered on the gbest
PSO model, where a particle is attracted towards the single best position found in the entire swarm at any iteration. The gbest
PSO, however, is susceptible to premature and/or false convergence over the multi-modal fitness landscapes [4,7]. The cur-
rent standard PSO (SPSO 2007) [3,4], obtainable from the Particle Swarm Central (http://www.particleswarm.info/) uses an
lbest topology where each particle is stochastically attracted to the best solution that any particle in its topological neighbor-
hood has found.

As will be evident from the following sections, the statistical properties of an lbest PSO will depend on the particular
neighborhood topology used for selecting the global best for each particle. Over the years several different topologies have
been proposed by the researchers. Since in this work we intended to provide a mathematical analysis (for the first time, to
the best of our knowledge) of the lbest PSO, and it is quite impossible to take into account all the possible topologies, we
selected the variable neighborhood topology since it is integrated in the current Standard PSO (SPSO 2007) model. Also,
according to [7,21], an advantage of the variable random topology over other fixed topologies like wheel, star etc. is greater
robustness. For a given problem, we can always find that a given fixed topology works better. But when the performance is
averaged (in terms of success rate) on a set of non-biased various problems (not too similar), an adaptive variable topology is
usually better [7], than a fixed topology. Suppose we are handling a pure black box optimization, i.e. we know nothing about
the problem, but its search space (and sometimes some constraints too) and how to evaluate the fitness on any point of this
search space. In this context, with a fixed neighborhood topology there is a ‘‘chance” that the result is very bad. With a var-
iable one, the probability of such a failure is smaller. Although our analysis takes into account the variable topology only, as
we will see, the framework can also be extended to other fixed topologies as well, with some modifications.

In this work, we provide a simple probabilistic analysis of the information exchange among the particles in lbest PSO using
the variable random topology model of SPSO 2007. We also investigate the probability distributions of the social and cog-
nitive terms over iterations. The analysis provides important insights into the process of choosing the informants by a par-
ticle in variable random neighborhood. It also focuses on the relative explorative powers of the lbest and gbest PSOs. Finally it
derives a simple state-space model of the dynamics of a particle in lbest PSO and draws a few important conclusions regard-
ing the stability and asymptotic convergence of the particle. The analysis undertaken in this paper is the first of its kind and
will provide a basis for the future theoretical investigation of the internal search mechanisms of lbest PSO with various other
topologies for improving the performance of the algorithm.

2. The particle swarm optimization algorithm

2.1. The classical PSO

The classical PSO [10,16] starts with the random initialization of a population of candidate solutions (particles) over the
fitness landscape. However, unlike other evolutionary computing techniques, PSO uses no direct recombination of genetic
material between individuals during the search. Rather it works depending on the social behavior of the particles in the
swarm. Therefore, it finds the global best solution by simply adjusting the trajectory of each individual towards its own best
position and toward the best neighboring particle at each time-step (generation).

In a D-dimensional search space, the position vector of the ith particle is given by ~Xi ¼ ðxi;1; xi;2; . . . ; xi;DÞ and velocity of the
ith particle is given by ~Vi ¼ ðv i;1;v i;2; . . . ; v i;DÞ. Positions and velocities are adjusted and the objective function to be optimized
i.e. f ð~XiÞ is evaluated with the new positional coordinates at each time-step. The velocity and position update equations for
the dth dimension of the ith particle in the swarm may be represented as:
Please
analys
v i;d;t ¼ x � v i;d;t�1 þ C1 � rand1 � pl
i;d;t�1 � xi;d;t�1

� �
þ C2 � rand2 � pg

i;d;t�1 � xi;d;t�1

� �
; ð1Þ

xi;d;t ¼ xi;d;t�1 þ v i;d;t ; ð2Þ

where rand1 and rand2 are random positive numbers uniformly distributed in (0,1) and are drawn anew for each dimension
of each particle.~pl

i is the personal best solution found so far by an individual particle while~pg
i represents the best particle in a

neighborhood of the ith particle, for lbest PSO model. Note that in PSO, a neighborhood is defined for each individual particle
as the subset of particles which it is able to communicate with. The gbest PSO may be regarded as a special case of the lbest
model where the entire swarm acts as the neighborhood of any particle and ~pg

i simply becomes the globally best position
found so far by all the particles in the population. In lbest PSO, if at any iteration a particle is the best in its neighborhood,
then the velocity update formula for this particle will be:
v i;d;t ¼ x � v i;d;t�1 þ C1 � rand1 � pl
i;d � xi;d;t�1

� �
: ð3Þ
The term C1 � rand1 � pl
i;d;t�1 � xi;d;t�1

� �
in the velocity updating formula of (1) represents a linear stochastic attraction of the

particle towards the best position found so far by itself. In literature researchers have called this component as ‘‘memory,”
cite this article in press as: S. Ghosh et al., Inter-particle communication and search-dynamics of lbest particle swarm optimizers: An
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‘‘self-confidence,” ‘‘cognitive part” or ‘‘remembrance.” The last term of the same formula i.e. C2 � rand2 � pg
i;d;t�1 � xi;d;t�1

� �
is

interpreted as the ‘social part’, which represents how an individual particle is influenced by the other members of its society.
C1 and C2 are called acceleration coefficients and they determine the relative influences of the cognitive and social parts on
the velocity of the particle. The particle’s velocity may be optionally clamped to a maximum value ~Vmax ¼ ½vmax;1;

vmax;2; . . . ;vmax;D�T . If in dth-dimension, jvi,dj exceeds vmax,d specified by the user, then the velocity of that dimension is
assigned to sign(vi,d)*vmax,d, where sign(x) is the triple-valued signum function.

2.2. Topological variants of the classical PSO

The basic PSO algorithm used in most of the existing papers implicitly uses a fully connected neighborhood topology (or
gbest). Every particle is a neighbor of every other particle. Hence all particles are stochastically attracted towards the best
solution found so far by any member of the swarm. Here each particle has access to the information of all other members
in the community.

However, local neighborhood models (or lbest) have also been proposed for PSO long ago, where each particle has access
to the information corresponding to its immediate neighbors, according to a certain swarm topology. The two most common
topologies are the ring topology, in which each particle is connected with two neighbors and the wheel topology (typical for
highly centralized business organizations), in which the individuals are isolated from one another and all the information is
communicated to a focal individual. Kennedy and Mendes [14,15] evaluated a number of topologies presented as well as the
case of random neighbors. In [19,20] Mendes et al. suggest that the gbest version converges fast but can be trapped in a local
optimum very often, while the lbest network has more chances to find an optimal solution, although with slower conver-
gence. As shown by the authors [19], the Von Neumann topology may perform better than other topologies including the
gbest version.

Nevertheless, selecting the most efficient neighborhood structure, in general, depends on the type of problem. One struc-
ture may perform more effectively for certain types of problems, yet have a worse performance for other problems. The cur-
rent standard PSO (SPSO’07 [7]) uses an lbest network with variable random neighborhood model and our present analysis
will mostly be based on this model only. It is described in more details in the next subsection.

2.3. The variable random topology

The variable neighborhood topology is described in Maurice Clerc’s book on PSO [7] and it can be seen now as a particular
case of the stochastic star of the work of Miranda et al. [21]. In this topology, there is no centralized concept of a global best.
The particles select each other as informants, and out of these informants, one particle may be selected as the target particle’s
global best. The topology is highly dependent on a threshold probability p, which is constant for all particles in the swarm.
Each particle assigns an uniformly distributed random value (between 0 and 1) to every other particle in the swarm. Then it
checks how many of these particles have values less than the threshold p. The particles having values less than p are chosen
as informants, implying that the target particle will attempt to select its global best from these particles. The best particle
among the informants is chosen as the global best for the target particle. If the particle’s own fitness is better than the best
informant, the particle simply takes its own locally best position into account.

3. Analysis of the inter-particle communication in lbest PSO (SPSO 2007)

3.1. Probabilities of selection of informants by a particle

Without loss of generality, in the analysis that follows, we assume that the particles are arranged in an ascending order of
their locally best fitness. From now on, when we refer to the ith particle, we mean the ith ranked particle. In the following
theorems we shall derive the probabilities that the ith particle selects the jth particle i.e. the jth ranked particle is selected as
the globally best position by the ith ranked particle. We shall show that a particle cannot select particles inferior to it.

Theorem 1. If Pij denotes the probability that the ith ranked particle selects the jth ranked particle as its global best where i < j
then Pij = 0.
Proof. The ith particle compares its own fitness with the best fitness of the k-selected informants. If the best particle among
k members (here, the jth particle) is worse than the fitness of the ith particle then it cannot be selected. Thus the probability
that the ith ranked particle selects the jth ranked particle as its global best becomes zero. h
Lemma 1. If n denotes the swarm size then the probability that the ith ranked particle chooses itself (i.e. uses Eq. (3) ) when the
number of chosen informants is k, is given by:
Please
analys
Pii;k ¼
n�iCk
n�1Ck

: ð4Þ
cite this article in press as: S. Ghosh et al., Inter-particle communication and search-dynamics of lbest particle swarm optimizers: An
is, Inform. Sci. (2010), doi:10.1016/j.ins.2010.10.015

http://dx.doi.org/10.1016/j.ins.2010.10.015


4 S. Ghosh et al. / Information Sciences xxx (2010) xxx–xxx
Proof. The ith particle chooses itself if it cannot find a particle superior to it among the chosen k members. Thus the chosen k
particles consist only of particles inferior to it. Since there are n � i particles inferior to it, the number of such possible com-
binations is n�i C

k. The total number of all possible combinations is given by n�1Ck. Hence the probability that the particle
chooses itself is given by Pii;k ¼

n�iCk
n�1Ck

. (Proved) h

Lemma 2. If Pij,k denotes the probability that the ith ranked particle selects the jth ranked particle as its global best where i > j and
exactly k informants are chosen, then
Please
analys
Pij;k ¼
n�1�jCk�1

n�1Ck
: ð5Þ
Proof. The jth particle can be selected only if it is superior to all other particles from the chosen k particles. There are n�j
particles inferior to the jth particle and there are n�j�1 particles inferior when we exclude the selecting particle itself. We
are effectively selecting k�1 particles, since the jth particle is already present among the chosen k particles. The total number
of such combinations is given by n�1�j C

k�1. The total number of all possible combinations is given by n�1Ck. The probability is
hence
Pij;k ¼
n�1�jCk�1

n�1Ck
: ðProvedÞ �
An important observation follows. First, when the jth ranked particle is selected by inferior particles, the selection prob-
ability is the same for all particles inferior to the jth particle. The result of Lemma 3 shows us that Pij;k ¼

n�1�jCk�1
n�1Ck

is dependent
only on j, n, and k.

In the following theorems, we find the respective probabilities that the i th particle follows the j th particle’s locally best
position, and that it follows its own locally best position. The results depend to a large extent on the value of p, the proba-
bility with which each particle is selected as an informant.

Theorem 2. The probability that the ith particle follows the locally best position of the jth particle is given by:
Pij ¼ p:ð1� pÞj�1
: ð6Þ
Proof. We first derive the probability with which exactly k informants are selected. Out of n-1 particles, there are n�1Ck ways
in which k particles can be selected as informants. For each combination, the probability that k particles are chosen and n-1-k
particles are not chosen as informants is given by pk(1 � p)n�1�k. Hence the total probability that exactly k particles are cho-
sen as informants is given by Pk = n�1Ckpk(1 � p)n�1�k. When exactly k informants are chosen, the probability that the ith par-
ticle follows the locally best position of the jth particle is given by Pijk ¼

n�1�jCk�1
n�1Ck

(from Lemma 2).

We can find the probability that the ith particle follows the jth particle by summing over the entire range of k from 0 to
n-1 as follows:
Pij ¼
Xk¼n�1

k¼0

Pijk:Pk ¼
Xk¼n�1

k¼0

n�1Ckpkð1� pÞn�1�k
n�1�jCk�1

n�1Ck
¼
Xk¼n�1

k¼0

n�1�jCk�1pkð1� pÞn�1�k
:

We substitute k = k � 1 in the above expression to obtain:
Pij ¼
Xk¼n�2

k¼0

n�1�jCkpkþ1ð1� pÞn�k�2 ¼ pð1� pÞj�1
Xk¼n�2

k¼0

n�1�jCkpkð1� pÞn�1�j�k
:

The lower limit of k is zero, and so the lower limit of k should be �1. However the value of n�1�j Ck becomes zero for k = �1,
so we neglect the lower limit, and begin our summation from k = 0. Again, j is a rank, so the inequality 1 6 j 6 n holds. Hence
we have n � 1 � j 6 n � 2. Further n�1�jCk = 0 for k > n � 1 � j. Thus we can shift the upper limit of summation to k = n � 1 � j.
The expression for Pij is now given by:
Pij ¼ pð1� pÞj�1
Xk¼n�1�j

k¼0

n�1�jCkpkð1� pÞn�1�j�k ¼ pð1� pÞj�1
: ðProvedÞ �
We arrive at the final expression through application of the binomial theorem.
Theorem 3. The probability that the ith particle follows its own locally best position is given by:
Pii ¼ ð1� pÞi�1
: ð7Þ
cite this article in press as: S. Ghosh et al., Inter-particle communication and search-dynamics of lbest particle swarm optimizers: An
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Proof. Proceeding in a similar manner to the proof of Theorem 2, we first derive the probability that exactly k informants are
selected. Out of n-1 particles, there are n�1Ck ways in which k particles can be selected as informants. For each combination,
the probability that k particles are chosen and n-1-k particles are not chosen as informants is given by pk(1 � p)n�1�k. Hence
the total probability that exactly k particles are chosen as informants is given by Pk = n�1Ckpk(1 � p)n�1�k. When exactly k
informants are chosen, the probability that the ith particle follows its own locally best position is given by Pii;k ¼

n�iCk
n�1Ck

.

We can find the probability that the ith particle follows itself by summing over the entire range of k from 0 to n � 1 as
follows:
Please
analys
Pii ¼
Xk¼n�1

k¼0

Pk:Pii;k ¼
Xk¼n�1

k¼0

n�1Ckpkð1� pÞn�1�k
n�iCk
n�1Ck

¼
Xk¼n�1

k¼0

n�iCkpkð1� pÞn�1�k ¼ ð1� pÞi�1
Xk¼n�1

k¼0

n�iCkpkð1� pÞn�i�k

¼ ð1� pÞi�1
Xk¼n�i

k¼0

n�iCkpkð1� pÞn�i�k ¼ ð1� pÞi�1
: ðProvedÞ �
We have shifted the upper limit of k to n � i in a manner similar to the proof of Theorem 2. Here also, we use the binomial
theorem to arrive at the final expression.

The results of the theorem are highly dependent on the value of p. When p = 1, the algorithm corresponds to the classical
gbest PSO, in which every particle of the swarm (excluding itself) is chosen as an informant for selection of the global best.
The probability Pij evaluates to 0 when j – 1 and it evaluates to 1 when j = 1. Thus all particles of the swarm follow the
globally best position. The probability Pii = 0 when i – 1 which implies that no particle (except the globally best one) can
use Eq. (3) for velocity update. When p = 0, the particles cease to interact with one another, with every particle following
its own locally best position. The plots in Fig. 1 show the probabilities Pii and Pij as functions of p.

3.2. Probability distributions

We shall now proceed with a formal analysis of the velocity update equation following the selection topology of the local
best PSO. Assuming that the entire particle swarm system is known at an earlier instant of time t � 1, we formulate the prob-
ability distributions of various terms in the update equation and contrast them with the classical PSO.

Finally we prove that in the case of the local best PSO, a particle is able to cover a greater search space area when com-
pared to the classical PSO, leading to greater explorative power. We assume, initially that our analysis is restricted to one-
dimensional space. The position update equation used in the classical PSO in scalar form is given by:
xiðtÞ ¼ xiðt � 1Þ þxv iðt � 1Þ þu1 pl
i � xiðt � 1Þ

� �
þu2 pg � xiðt � 1Þð Þ: ð8Þ
The position update equation used in the local best PSO is given by:
xiðtÞ ¼ xiðt � 1Þ þxv iðt � 1Þ þu1 pl
i � xiðt � 1Þ

� �
þu2 pg

i � xiðt � 1Þ
� �

; ð9Þ
when the i-particle does not select itself, and
xiðtÞ ¼ xiðt � 1Þ þxv iðt � 1Þ þu1ðpl
i � xiðt � 1ÞÞ; ð10Þ
Fig. 1. (a) Variation of Pii with p for different values of i and (b) Variation of Pij with p for different values of j.

cite this article in press as: S. Ghosh et al., Inter-particle communication and search-dynamics of lbest particle swarm optimizers: An
is, Inform. Sci. (2010), doi:10.1016/j.ins.2010.10.015
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when the i th particle selects itself. xi(t � 1) and xi(t) are the positions of the ith ranked particle at time instant t � 1 and time
instant t. vi(t � 1) is velocity of the ith particle at time instant t � 1. pl

i is the locally best position of the ith particle at time
instant t � 1 respectively. pg is the globally best position found by the entire swarm. pg

i is the globally best position found by
the ith particle after application of the selection rules of the lbest PSO. Note that u1 = C1*rand1 and u2 = C2*rand2 as per Eq.
(1) and x is a real constant between 0 and 1.

The velocities and positions of a particle at an instant t depend not only on their values at the instant t � 1, but also on the
random numbers u1 and u2 and on the topology for selecting the global best. Hence we begin our analysis on the assump-
tion that the entire particle swarm system at the instant t � 1 is completely known to us, i.e. the velocities, locally best posi-
tions and positions at the instant t � 1 are considered as deterministic in our analysis. This enables us to build a clear picture
of the extent to which a particle may be perturbed from its known original position at t � 1 to form its new position at t. We
shall eventually obtain the expressions for the total bound of perturbation, and proceed to show that for the local best PSO
the particle is perturbed to a greater extent in comparison with the classical PSO. Due to a greater degree of perturbation, the
particle is capable of searching more distant zones on the fitness landscape.

3.2.1. Probability distributions of various terms in the position update equation
3.2.1.1. The inertial term. This term is common to both the local best PSO and the classical PSO. The inertial term variable Wi

for the ith ranked particle is defined as Wi = x � vi(t � 1), where x is a constant and vi(t � 1) is a deterministic quantity. Thus
the inertial term is not a random variable, since it is the product of a known constant and a deterministic quantity. The prob-
ability distribution of the inertial term hence does not exist.

3.2.1.2. The cognitive term. We can define the term Ci for the ith ranked particle by the following expression:
Please
analys
Ci ¼ /1 pl
i � xiðt � 1Þ

� �
¼ /1Dii; ð11Þ
/1 is a random number defined uniformly in the range (0,1). The probability distribution of Ci, assuming that Dii is determin-
istic, is given by:
pCi
ðxÞ ¼ 1

Dii
; for 0 6 x 6 Dii ¼ 0; for x > Dii or x < 0; ð12Þ
when Dii > 0, and,
pCi
ðxÞ ¼ 1

jDiij
; for Dii 6 x 6 0 ¼ 0 for x < Dii or x > 0; ð13Þ
when Dii < 0.

3.2.1.3. The social term. We can define the term Si for the local best PSO as:
Si ¼ /2ðpg
i � xiðt � 1ÞÞ; ð14Þ
when the ith ranked particle selects a superior particle, and Si = 0 when the ith ranked particle selects itself. Now the ith par-
ticle selects itself with probability Pii and the jth particle with probability Pij. Obviously Pij = 0 for i < j. Thus we can expand
the definition of Si for the local best PSO as follows:
Si ¼ 0 with probability Pii

Si ¼ /2ðpl
1 � xiðt � 1ÞÞ ¼ /2Di1 with probability Pi1

Si ¼ /2ðpl
2 � xiðt � 1ÞÞ ¼ /2Di2 with probability Pi2

� � �
� � �
� � �

Si ¼ /2ðpl
i�1 � xiðt � 1ÞÞ ¼ /2Di;i�1 with probability Pi;i�1:
The probability distribution of Si can be written concisely below:
pSi
ðxÞ ¼ PiidðxÞ þ

Xi�1

j¼1

PijGijðxÞ; ð15Þ
where
GijðxÞ ¼
1
jDijj

for 0 6 x 6 Dij ¼ 0 for x < 0 and x > Dij;
cite this article in press as: S. Ghosh et al., Inter-particle communication and search-dynamics of lbest particle swarm optimizers: An
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when Dij > 0
Please
analys
GijðxÞ ¼
1
jDijj

for Dij 6 x 6 0 ¼ 0 for x > 0 and x < Dij;
when Dij < 0.
Hence the probability distribution of Si consists of a single impulse at the origin, and several gate functions on both sides

of the origin, which add up to form a step function. We can define the social term Si for the classical PSO as
Si = /2(pg � xi(t � 1)) where pg is the globally best position of the entire swarm which is deterministic and is utilized by
all particles in the swarm.

The probability distribution of Si can be written as:
pSi
ðxÞ ¼ 1

jDi1j
; for 0 6 x 6 Di1 ¼ 0; for x > Di1 and x < 0; ð16Þ
when Di1 > 0
pSi
ðxÞ ¼ 1

jDi1j
; for Di1 6 x 6 0 ¼ 0; for x < Di1 and x > 0; ð17Þ
when Di1 < 0.
The probability distribution contains a single gate pulse, which may lie to the left or right of the origin, as opposed to the

distribution for the local best PSO which consists of an impulse function, as well as several gate pulses, depending on how
many superior particles are referenced in the update equation.

The results derived in the previous section can be applied to a sample case, which defines the initial position of the swarm
at time instant t � 1. We can obtain the distribution of the cognitive and social terms for a particular particle. The swarm size
is assumed to be 5 particles and the value of p is assumed to be 0.4. For example, we are interested in obtaining the distri-
bution for the 4th ranked particle. Table 1 shows the configuration of the 4th ranked particle at time instant t � 1. Fig. 2(a)
shows the distribution of the cognitive term for the 4th ranked particle. This distribution is common to both topologies.
Fig. 2(b) and (c) show the distribution of the social terms for the 4th particle in the case of the classical PSO and the local
best PSO respectively.
3.3. Lower and upper bounds

We can write the expression for the position xi(t) for the ith particle at the tth time instant as:
xiðtÞ ¼ xiðt � 1Þ þWi þ Ci þ Si; ð18Þ
where Wi represents the inertial term, Ci represents the cognitive term and Si represents the social term. Since xi(t � 1) and
Wi are deterministic, the only random variables are Ci and Si. We have already derived the expressions for the probability
distributions of these random variables. The probability distribution of the particle’s position at all instants of time is
bounded, and we are primarily interested in determining the upper and lower bounds of this distribution. The range of
the distribution is a measure of the explorative capability of the particle, and it is the difference between the upper and lower
bounds of the distribution. In the above expression for the position, the term Ci have same distribution for the classical PSO
and the local best PSO, while Si is topology dependent and hence is different for the two topologies. We can express the lower
and upper bounds of a particle’s position as:
LB½xiðtÞ� ¼ xiðt � 1Þ þWi þ LB½Ci� þ LB½Si� ð19Þ
UB½xiðtÞ� ¼ xiðt � 1Þ þWi þ UB½Ci� þ UB½Si�; ð20Þ
where LB[R] and UB[R] denote the lower and upper bounds respectively, of the random variable R.
Table 1
Configuration of the 4th ranked particle at a time
instant t � 1.

Position x4(t � 1) 5.234
Velocity v4(t � 1) �2.176
D41 ¼ pl

1 � x4ðt � 1Þ 8.274

D42 ¼ pl
2 � x4ðt � 1Þ 2.543

D43 ¼ pl
3 � x4ðt � 1Þ �6.780

D44 ¼ pl
4 � x4ðt � 1Þ �3.869

D45 ¼ pl
5 � x4ðt � 1Þ 4.218
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Fig. 2. The probability distributions of the (a) cognitive term in lbest and gbest PSO (b) social term in classical gbest PSO, and (c) social term in lbest PSO for
the update equation of the 4th ranked particle.
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Definition. For the ith ranked particle, the social search space range
P

i;s of the social term Si is defined to be the difference
between the upper bound and the lower bound of Si in the topology s. Hence

P
i;s ¼ UB½Si� � LB½Si� for topology s. In case of

the topology s1 corresponding to the classical PSO, the lower and upper bounds of Si are:
Please
analys
LB½Si� ¼ Di1 if Di1 < 0;
¼ 0 if Di1 P 0;

UB½Si� ¼ Di1 if Di1 > 0;
¼ 0 if Di1 6 0:
In case of the topology s2 corresponding to the local best PSO, we initially define two sets qi and ni as:
qi ¼ Dijjj < i and Dij < 0; i; j 2 N
� �

and ni ¼ Dijjj < i and Dij P 0; i; j 2 N
� �

:

Then the upper and lower bounds of Si are:
LB½Si� ¼ Di1 if Di1 < 0;
¼ 0 if Di1 P 0;

UB½Si� ¼ Di1 if Di1 > 0;
¼ 0 if Di1 6 0:
In case of the topology s2 corresponding to the local best PSO, we initially define two sets qi and ni as:
qi = {Dijjj < i and Dij < 0,i, j 2 N} and ni = {Dijjj < i and Dij P 0;i, j 2 N}. Then the upper and lower bounds of Si are:
LB½Si� ¼ 0 if qi ¼ / UB½Si� ¼ 0 if ni ¼ /

¼min ðqiÞ if qi – / ¼max ðniÞ if ni – /
Lemma 3. For the ith particle if
P

i;1 denotes the search space range of the social term Si for topology s1 corresponding to the
classical PSO and

P
i;2 denotes the search space range of Si for topology s2 corresponding to the local best PSO then

P
i;2 P

P
i;1 for

1 6 i 6 n.
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Proof. We can write the expressions for the search space ranges corresponding to topologies s1 and s2 as:
Please
analys
X
i;1

¼ jDi1j

P
i;2

¼ maxðniÞ �minðqiÞ when ni–/ and qi–/

¼maxðniÞ when ni–/ and qi ¼ /

¼ �minðqiÞ when ni ¼ / and qi–/

¼ 0 when ni ¼ / and qi ¼ /
1. For the case when Di1 < 0, Di1 2 qi and hence, qi – / and
P

i;2 ¼maxðniÞ �minðqiÞwhen ni – / and
P

i;2 ¼ �minðqiÞwhen
ni = /. Then min (qi) 6 Di1
) �minðqiÞP �Di1;

) �minðqiÞP jDi1jjDi1j ¼ �Di1:
Since max (ni) > 0 we have
maxðniÞ �minðqiÞP jDi1j:
Hence when Di1 < 0;
P

i;2 P
P

i;1

2. For the case when Di1 P 0, Di1 2 ni and hence ni – / and
P

i;2 ¼maxðniÞ �minðqiÞ when qi – /, and
P

i;2 ¼maxðniÞ when
qi = /. Then we have max (ni) P Di1)max (ni) P jDi1j as Di1 P 0. Since min (qi) < 0, we have max (ni) �min (qi) P jDi1j.
Hence when Di1 > 0;

P
i;2 P

P
i;1. Hence Lemma 3 is proved. h
Definition. For the ith ranked particle, the search space range Ci,s of the position xi(t) is defined to be the difference between
the upper bound and the lower bound of xi(t) in the topology s.

Hence Ci,s = UB[xi(t)] � LB[xi(t)] for topology s.
Theorem 4. For the ith particle if Ci,1 denotes the search space range of the position xi(t) for topology s1 corresponding to the
classical PSO and Ci,2 denotes the search space range of xi(t) for topology s2 corresponding to the local best PSO then Ci,2 P Ci,1

for 1 6 i 6 n.
Using Eqs. (19) and (20) we have:
Ci;s ¼ UB½Ci� � LB½Ci� þ UB½Si� � LB½Si�;
where the first four terms on the right hand side are the same for both the classical PSO and the local best PSO. These four terms sum
up to form the term gi which is common to both topologies. The terms corresponding to the social dynamics are different and can be
combined to form

P
i;s. Thus we can write:
Ci;1 ¼ gi þ
P
i;1
;

Ci;2 ¼ gi þ
P
i;2
:

Since
P

i;2 P
P

i;1;Ci;2 P Ci;1. Hence the theorem is proved.
The search space range defines the extent to which a particle may be perturbed due to the velocity and position update

equations. Greater the search space range, greater the explorative power of the particle. From an intuitive interpretation of
Theorem 4, we conclude that the variable random topology is superior to the topology used in the classical PSO in the sense
that it provides a greater explorative power to the particle. This is amply illustrated in Fig. 2(b), where we observe that as an
example, the social term introduces a perturbation from x = 0 to x = 8, thus resulting in a search space range of C = 8, while in
Fig. 2(c) the corresponding perturbation in the case of the local best PSO is from x = �6 to x = 8 and results in a range of
C = 14.

4. A state-space analysis of particle dynamics in lbest PSO

In the following analysis we model the particle velocities and positions as state variables. It is assumed that the locally
best positions of all particles do not change with time, and each particle has its distinct local best position. Consequently, the
ranks of the particles are static, since the ranks are based only on the locally best positions. With this assumption we find the
state space representation of the system [17,18,28] and show how the use of the variable random topology leads to a change
in the system matrix and hence affects the convergence rate of the expected positions and velocities. Conditions leading to
the asymptotic convergence of the expectation values of position and velocity of the particle are also investigated.

Consider the velocity and position update equations for the lbest PSO (on a one-dimensional search space) using variable
random topology in a slightly different way as:
v iðtÞ ¼ xv iðt � 1Þ þu1ðpl
i � xiðt � 1ÞÞ þu2ðp

g
i � xiðt � 1ÞÞ; ð21aÞ

xiðtÞ ¼ xiðt � 1Þ þxv iðt � 1Þ þu1ðpl
i � xiðt � 1ÞÞ þu2ðp

g
i � xiðt � 1ÞÞ; ð21bÞ
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when the particle selects another particle as its global best, and
Please
analys
xiðtÞ ¼ xiðt � 1Þ þxv iðt � 1Þ þu1ðpl
i � xiðt � 1ÞÞ; ð21cÞ
when it selects itself.
Since the ith particle selects other particles with probabilities Pi1, Pi2, Pi3, . . .. Pi,i�1 and itself with probability Pii, the expec-

tation value of the position and velocities of the ith particle can be expressed as:
Ev iðtÞ ¼ xEv iðt � 1Þ þ Eð/1Þðpl
i � Exiðt � 1ÞÞ þ Eð/2Þ

Xi�1

j¼1

Pijðpl
j � Exiðt � 1ÞÞ ) Ev iðtÞ

¼ xEv iðt � 1Þ � Eð/1Þ þ Eð/2Þ
Xj¼i�1

j¼1

Pij

 !
Exiðt � 1Þ þ Eð/1Þpl

i þ Eð/2Þ
Xi�1

j¼1

Pijpl
j ) Ev iðtÞ

¼ xEv iðt � 1Þ � C1

2
þ C2

2
ð1� PiiÞ

� 	
Exiðt � 1Þ þ C1

2
pl

i þ
C2

2

Xi�1

j¼1

Pijpl
j: ð22Þ
Similarly, the expectation value of the position of the ith particle is given by:
ExiðtÞ ¼ xEv iðt � 1Þ þ 1� C1

2
� C2

2
ð1� PiiÞ

� 	
Exiðt � 1Þ þ C1

2
pl

i þ
C2

2

Xi�1

j¼1

Pijpl
j: ð23Þ
From the above relations, the state space representation of the system (for the ith particle) is given by:
ExiðtÞ
Ev iðtÞ


 �
¼

1� g x
�g x


 �
Exiðt � 1Þ
Ev iðt � 1Þ


 �
þ

1
1


 �
C1

2
pl

i þ
C2

2

Xi�1

j¼1

Pijpl
j

" #
: ð24Þ
The A-matrix of the state space model is given by A ¼ 1� g x
�g x


 �
where:� 	 � 	
g ¼ C1

2
þ C2

2
ð1� PiiÞ ¼

C1

2
þ C2

2
ð1� ð1� pÞi�1Þ :
A block diagram representing the above state-space model has been shown in Fig. 3.
It is interesting to note how the inclusion of the term (1 � (1 � p)i�1) affects the degree of social interaction of each par-

ticle. The particle, which has found the fittest lbest position, is given total autonomy and does not interact with other par-
ticles. As i increases, the degree of social interaction increases. Greater the degree of social interaction, greater is the
explorative power. Hence the best particle is concerned only with exploitation, while the other particles not only explore
their surroundings, but also exploit their locally best positions.

The characteristic equation of the A-matrix is given by k2 + k(g � 1 �x) + x = 0. On application of the Jury and
Blanchard’s stability test [18] to investigate stability of this system, it is found that the following three conditions hold
for the system to be stable and convergent:
ð1Þ g > 0) C1 þ C2½1� ð1� pÞi�1� > 0; ð25aÞ
ð2Þ g < 2ð1þxÞ ) C1 þ C2½1� ð1� pÞi�1� < 4ð1þxÞ; ð25bÞ
ð3Þ jxj < 1: ð25cÞ
Note that these conditions ensure that the poles of the system are confined within the unit circle in the Z-plane [18], i.e. the
transient response of the system is damped and it settles down to constant values asymptotically. In all implementations of
Fig. 3. Block diagram model of the state-space representation of a particle dynamics in lbest PSO with variable neighborhood.
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the classical PSO algorithm, the inertial factor x is between 0 and 1, hence condition (3) is satisfied. p is a probability term,
hence it lies between 0 and 1. Note that in order to ensure the stability of the gbest PSO the cognitive and social parameters
C1 and C2 are given appropriate values so that the condition 0 < C1 + C2 < 4(1 + x) is satisfied [25–27]. However, since
0 < C1 + C2[1 � (1 � p)i�1] < C1 + C2 holds conditions (1) and (2) are also satisfied.

In order to support the above analysis below we provide the phase trajectories (velocity vs. position plots) of a particle
in lbest topology with variable random neighborhood under two different settings of the control parameters x, C1, C2, and
p. For the first case we choose x = 0.6, C1 = C2 = 2.00, and p = 0.5, which obey the conditions provided in (25). As seen from
Fig. 4(a) the phase trajectory spirally converges inward to a fixed point (the stable attractor) on the position axis of the
particle. It ultimately converges to the point (x0,0) on the x-axis where x0 = c0/g and c0 ¼ C1

2 pli þ C2
2

Pi�1
j¼1Pij:plj

� �
. For the

parameter settings we have selected to plot the state-space trajectory, x0takes a value of 5.46. In the second case we
choose x = 0.6, C1 = C2 = 4.60, and p = 0.5, a setting that does not obey the stability conditions enlisted in (25a)–(25c). Con-
sequently we see that the discrete-time phase-trajectory of this particle is unstable and diverges away with time in a zig–
zag path.
5. Conclusions

Past few years have witnessed an increasing interest of the researchers towards the theoretical understanding of different
properties of the PSO algorithm. However, to the best of our knowledge, till date, all the significant research papers published
in this area are concerned about the gbest PSO, which is prone towards premature convergence (since all the particles are
attracted towards a single point of the fitness landscape) and is generally biased towards optima at the origin. The current
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standard PSO (SPSO 2007) uses an lbest PSO with variable random neighborhood topology. This work is the first of its kind
that attempts to provide a theoretical foundation to the working principles of the lbest PSO. First it captures an inner view of
the particle interaction in the variable random topology of an lbest PSO by deriving the probabilities with which the particles
exchange information among themselves. Since the particles choose informants on basis of their locally best fitness values,
we have analyzed their interaction by assigning a fitness-based rank to each of them. We have also shown that the classical
topology is a special case of the variable random topology when p = 1. By deriving expressions for the bound of a particle’s
position, we have proved that the variable random topology provides a wider search space to a particle than the classical
topology. Finally we present a state-space model of the swarm dynamics under certain simplifying assumptions and then
deduce the necessary conditions that ensure stability and asymptotic convergence of the particle dynamics by using Jury
and Blanchard’s stability test, a very common technique from digital control engineering.

Further research may focus on the effect of p on the performance of the algorithm, as well as other topological variants of
the variable random topology. The analysis in this paper has been specifically based on the variable random topology in
which each variable chooses the best particle out of a few randomly chosen informants. It is worthy to investigate how
the mathematical framework described in this article may be extended to more advanced PSO-variants [24,30,31]. We in-
tend to undertake a similar analysis the particle interactions for a recently developed version of PSO, called Cyber Swarm
Algorithms [31] that encourage the use of variable random neighborhoods and incorporate adaptive memory learning strat-
egies derived from principles embodied in Scatter Search and Path Relinking. General steps in the analysis like probability of
choosing informants, stochastic state-space model based on the expectation values of the position (which depend on the
probability calculations), and the investigation of the search space bound of a particle can also be extended to other topol-
ogies as well, in which the particle chooses the locally best positions of other particles in either phenotypic or genotypic
neighborhood. It will be worthy to investigate the convergence behavior of PSO-variants when applied to multi-objective
optimization problems [29]. Our future works will proceed in this direction.
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