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Abstract—This paper presents a swarm rough approach to
analyze the combination factors of violent crime. The approach
discovers the feature combinations in an efficient way to
observe the change of rough set positive region as the fuzzy
swarm proceed throughout the search space. We evaluated
the performance of our approach using the violent factor
datasets and the corresponding computational experiments are
discussed. Empirical results indicate that our approach is ideal
for all the considered problems and the fuzzy swarm optimiza-
tion technique outperforms dynamic reducts (DR) approache
by obtaining multiple reductions for the combination factor
datasets.
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I. INTRODUCTION

Violent crimes take violence behaviors of infringing upon
other people to obtain some interest or satisfy a certain
desire, including eight categories of violence cases: murder,
explosion, poisoning, arson, hijacking, kidnapping, rape and
intentional injury [1]. It not only causes severely victims’
bodily injury and psychological trauma, but also seriously
harms victims’ families and public stability. The incidence
rate of violent crimes is small, however, its social harmful-
ness is much severer than other crimes, so to prevent violent
crimes are the focus of police work. Therefore, to explore
the reasons of violent crime and the search for effective
management and educational measures have been the key
areas of sociology and criminology research. Currently,
in the field of bioinformatics, a large number of genes
about criminal factors have been excavated, which have the
meaning of the milestone for the key of the detecting crime
[2], [3], [4], [5]. At the same time, psychology has also been
widely applied to the correlation analysis of crime factors,
and it reveals the implicit relation between psychological
motives. For example, the personality can be analyzed by
the Eysenck Personality Questionnaire (EPQ) [6], [7]. In
addition, some new information is obtained, such as the
offender’s personal information, crime, health and family
background. These associated datasets imply some valuable

information. But they are acquired from measurements or
from human experts, with uncertain and noisy information.
So it is still an important challenge to analyze these datasets
from practical and theoretical perspectives [8], [9], [10].
In this paper, we present an analytical framework analyze
combination factors for violent crime and introduce a fuzzy
swarm rough set approach to extract the rules from the multi-
dimension factor datasets.

II. ANALYTICAL FRAMEWORK

In our violent behavior analysis, there are seven main
steps: data acquisition, original datasets, data preprocessing,
result analysis, normalizing datasets, data analysis, rules
and conclusions. In the data acquisition step, we obtain
three kinds of data attributes including the environment
data, psychology data and genotype data. All the data are
collected into the original datasets. The detailed attributes
will be presented in Section V. There are some duplicates,
deletion, dispersion and manifest fault, etc in the original
data. We have to preprocess these data by cleaning, trans-
forming, integration and fltering and then all the “clean”
and “integrated” data are stored as normalized datasets. We
statistically analyze the dataset. Their information entropy
is measured. Then the proposed fuzzy rough set reduction
is introduced to reduce the dataset. The reduction results are
analyzed locally (single attribute or combination of several
attributes) and globally ( all attributes in one record or all
records). The last step produces the output of some rules and
conclusions. In summary, the complete system architecture
is illustrated in Figure 1.

III. ROUGH SET REDUCTION

The basic concepts of rough set theory and its philosophy
are presented and illustrated with examples in [11], [12],
[13], [14], [15], [16]. Here, we illustrate only the relevant
basic ideas of rough sets that are relevant to the present
work.

In rough set theory, an information system is denoted
in 4-tuple by S = (U,A, V, f), where U is the uni-



Figure 1. Overview of our architecture.

verse of discourse, a non-empty finite set of N objects
{x1, x2, · · · , xN}. A is a non-empty finite set of attributes
such that a : U → Va for every a ∈ A (Va is the value set
of the attribute a).

V =
⋃
a∈A

Va

f : U × A → V is the total decision function (also called
the information function) such that f(x, a) ∈ Va for every
a ∈ A, x ∈ U . The information system can also be defined
as a decision table by T = (U,C,D, V, f). For the decision
table, C and D are two subsets of attributes. A = {C ∪D},
C ∩D = ∅, where C is the set of input features and D is
the set of class indices. They are also called condition and
decision attributes, respectively.

Definition 1: [Reduct] Given a decision table T =
(U,C,D, V, f). The attribute a ∈ B ⊆ C is D −
dispensable in B, if POSB(D) = POS(B−{a})(D); oth-
erwise the attribute a is D − indispensable in B. If all
attributes a ∈ B are D − indispensable in B, then B will
be called D − independent. A subset of attributes B ⊆ C
is a D − reduct of C, iff POSB(D) = POSC(D) and B
is D − independent.

Definition 2: [Multi-reduct] Let 2|A|

represent all possible attribute subsets
{{a1}, · · · , {a|A|}, {a1, a2}, · · · , {a1, · · · , a|A|}}. Let
RED represent the set of reducts, i.e.,

RED = {B|POSB(D) = POSC(D),

POS(B−{a})(D) < POSB(D)}
(1)

Definition 3: [Multi-knowledge] Let RED represent the
set of reducts, and ϕ is a mapping from the condition space
to the decision space. Then multi-knowledge can be defined
as follows:

Ψ = {ϕB |B ∈ RED} (2)

Definition 4: [Reduced positive universe] Given a de-
cision table T = (U,C,D, V, f). Let U/C =
{[u′

1]C , [u
′

2]C , · · · , [u
′

m]C}, reduced universe U
′

can be
written as:

U
′

= {u
′

1, u
′

2, · · · , u
′

m}. (3)

And reduced positive universe U
′

pos can be determined:

U
′

pos = {u
′

i1 , u
′

i2 , · · · , u
′

it}. (4)

Definition 5: [Reduced positive region] Given a decision
table T = (U,C,D, V, f). Let POSC(D) = [u

′

i1
]C ∪

[u
′

i2
]C ∪ · · · ∪ [u

′

it
]C , where ∀u′

is
∈ U

′
and |[u′

is
]C/D| =

1(s = 1, 2, · · · , t). ∀B ⊆ C, reduced positive region

POS
′

B(D) =
⋃

X∈U ′/B∧X⊆U ′
pos∧|X/D|=1

X (5)

where |X/D| represents the cardinality of the set X/D.
Consider Definitions 4 and 5, ∀B ⊆ C, POSB(D) =

POSC(D) if POS
′

B = U
′

pos [16]. It is to be noted that
U

′
is the reduced universe, which usually would reduce the

scale of datasets significantly. It provides a more efficient
strategy to observe the change of positive region when we
search the reducts. We do not have to calculate U/C, U/D,
U/B, POSC(D), POSB(D) to compare POSB(D) with
POSC(D) to determine whether they are equal to each other
or not. We only calculate U/C, U

′
, U

′

pos, POS
′

B and then
compare POS

′

B with U
′

pos.

IV. FUZZY SWARM ROUGH SET REDUCTION

As mentioned above, finding all the reducts of information
systems or decision tables is NP-complete problem [17],
[18]. In this section, we present a fuzzy swarm algorithm
for rough set reduction.

A. Canonical swarm optimization
The canonical swarm model consists of a swarm of indi-

viduals, which are initialized with a population of random
candidate solutions. They move iteratively through the d-
dimension problem space to search the new solutions, where
the fitness, f , can be calculated as the certain qualities
measure.

Each individual has a position represented by a position-
vector ~pi (i is the index of the individual), and a velocity
represented by a velocity-vector ~vi. Each individual remem-
bers its own best position so far in a vector ~p#i , and its j-th
dimensional value is p#ij . The best position-vector among
the swarm so far is then stored in a vector ~p∗, and its j-
th dimensional value is p∗j . During the iteration time t, the
update of the velocity from the previous velocity to the new
velocity is determined by Equ. (6). The new position is then
determined by the sum of the previous position and the new
velocity by Equ. (7).

vij(t) = wvij(t− 1) + c1r1(p#ij(t− 1)− pij(t− 1))

+ c2r2(p∗j (t− 1)− pij(t− 1))
(6)



pij(t) = pij(t− 1) + vij(t) (7)

where w is called as the inertia factor, r1 and r2 are the
random numbers, which are used to maintain the diversity of
the population, and are uniformly distributed in the interval
[0,1] for the j-th dimension of the i-th individual. c1 is a
positive constant, called as coefficient of the self-recognition
component, c2 is a positive constant, called as coefficient of
the social component.

B. Fuzzy swarm for rough set reduction

Given a decision table T = (U,C,D, V, f), the set of
condition attributes, C, consist of m attributes. We set up a
search space of m dimension for the rough set reduction.

Accordingly, each individual’s position is represented as
a vector with m dimension. Each dimension of the individ-
ual’s position maps one condition attribute. The individual’s
position is a series of priority levels of the attributes. The
sequence of the attribute will not be changed during the
iteration. The domain for each dimension is limited from 0 to
1. The value ‘1’ means the corresponding attribute is selected
definitely while ‘0’ not selected definitely. Otherwise the
attribute would be selected with the probability according to
the value of the individual’s position. So each position can
be “decoded” to a potential reduction solution, an subset of
C. In other words, we can map C into a fuzzy set R using a
fuzzy reduct relation through the individual’s fuzzy position-
vector. The fuzzy reduct relation ~pi between C and R has the
following meaning: for each element in the position-vector
~pi (i is the index of the individual), the element

pij = µF (Cj , Rj) (8)

where µF is the membership function, i ∈ {1, 2, · · · , n}, j ∈
{1, 2, · · · ,m}. In the attribute reduction problem, the ele-
ments of the solution must satisfy the following conditions:

pij ∈ [0, 1], i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · ,m} (9)

Here pij represents the degree of membership of the i-th
element ci in domain C and the j-th element rj in domain
R to relation ~pi.

In the crisp mode, the individual’s position in the con-
sidered dimension is positive, the corresponding attribute
is selected definitely. And the negative direction implies
that it is not selected definitely. In the fuzzy mode, the
individual’s position is fuzzified, which is propagated from
its velocity. At each time iterating step, each individual
updates its velocity according to Equ. (6). And the position
is updated according to Equ. (7). In our fuzzy swarm model,
the position is fuzzified by the sigmoid function:

Γ(pij(t)) =
1

1 + e−pij(t)
(10)

Figure 2 illustrates how the position is reacted on by its
velocity when the individuals’ maximum positions output

Figure 2. Curve of membership functions.

from Equ. (7) are clamped in between [−5, 5]. The mem-
bership functions are similar with the ones in [19].

Since the position indicates the potential reduction so-
lution, we should “decode” the fuzzy vectors and get the
feasible solutions. The position values are compared with
a random number ρ in the interval [0,1]. If the position
value is larger than ρ, the position would be defuzzied as
‘1’, i.e. the corresponding selection flag sij(t) is set to
‘1’. And the corresponding attribute with the position is
selected. Otherwise the attribute would be not selected as
Equ. (11). After all the elements of the position vector have
been processed, we get the reduction solution from the fuzzy
swarm model.

sij(t) =

{
1 if Γ(pij(t)) > ρ;

0 otherwise.
(11)

If it is a feasible solution, we calculate the attribute
number in the subset of attributes. The solution with the
lowest number would be selected. For the swarm, the lower
number of attributes in the feasible solution, the better the
fitness of the corresponding individual is. So the individual’s
fitness is determined by Equ. (12). If the reduced universe
of discourse is non-equal to the reduced positive region, i.e.
POS

′

E 6= U
′

pos, the fitness is punished as the total number of
the condition attributes, otherwise the fitness is the attribute
number of the potential reduction solution represented by
the individual’s position.

fD(E) =

{
|E| if POS

′

E(D) = U
′

pos

|C| if POS
′

E(D) 6= U
′

pos

(12)



Algorithm 1 Fuzzy swarm rough set reduct algorithm
Input:

Swarm size n, the maximum velocity of individual
swarm vmax, the component coefficients c1 and c2.

Output:
Reduction solutions indicated by the vectors of the best
individuals ~p∗.

1: Calculate U
′
, U

′

pos using Equs. (3) and (4);
2: Initialize the positions and the velocities for all the

individuals randomly;
3: while the end criterion is not met do
4: t← t+ 1;

{// Calculate the fitness value of each individual}
5: for i= 1 to n do
6: if POS

′

E 6= U
′

pos then
7: the fitness is punished as the total number of the

condition attributes;
8: else
9: the fitness is the number of ‘1’ in the correspond-

ing selection flag string ~si(t).
10: end if
11: end for
12: ~p∗ = argminni=1(f(~p∗(t −

1)), f(~p1(t)), f(~p2(t)), · · · , f(~pi(t)), · · · , f(~pn(t)));
13: for i= 1 to n do
14: ~p#i (t) = argminni=1(f(~p#i (t− 1)), f(~pi(t));
15: for j = 1 to d do
16: Update the j-th dimension value of ~vi and ~pi

according to Equs. (6) and (7).
17: Fuzzify the j-th dimension value of ~pi(t) by Equ.

(10).
18: Obtain the corresponding selection flag sij(t) by

Equ. (12).
19: end for
20: end for
21: end while

V. EXPERIMENTS AND RESULTS

A. Dataset acquiring

The dataset is acquired by the Chongqing Municipal
Public Security Bureau, Institute of Environmental Systems
Biology and School of Information Science and Technol-
ogy of Dalian Maritime University. All informed consents
were obtained before participation. During the acquiring
process of dataset, the considered factors include the family
environment (degree of education, occupation, and family
economic status), P and N psychological factor, MAOA and
DRD4 genotypes, up to 64 factors. The family environ-
ment information is acquired by participant’s information
questionnaire. The psychological information is obtained by
Eysenck personality questionnaire. Genetic information is
obtained by polymerase chain reaction (PCR).

Table II
PARAMETER SETTINGS FOR THE ALGORITHMS.

Algorithm Parameter name Value

Number of sampling levels 5
Number of subtables

to sample per level 10

DR Smallest subtable size
(lowest level) 50%

Largest substable size
(highest level) 90%

Swarm size (even)(int)(10 + 2 ∗ sqrt(L))
Self coefficient c1 0.5 + log(2)

Swarm Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91
Clamping Coefficient φ 0.5

In the process of data acquisition, there are some missing,
redundant and even data with some tolerances. There are
three processing methods for handling these type of data
records: no processing, filling or deleting. After cleaning,
transforming, integration and filtering, the datasets are orig-
inal 67 attributes (columns) and 2486 records (rows) to
normalized 20 attributes (columns) and 578 records (rows)
as illustrated in Table I.

B. Rough set extraction

After the normalized datasets are discretized, we make
an attempt to reduce the datasets of combination factors
using the proposed fuzzy swarm rough set algorithm. In
our experiments, the algorithm used for comparison was dy-
namic reducts (DR) [20], [21]. Dynamic reducts (DR) is first
defined by Bazan et al. [20], [21]. A number of subtables are
randomly sampled from the input table, and proper reducts
are computed from each of these using some algorithms.
The reducts that occur the most across subtables are in
some sense the “most stable” [22]. Both methods are valid
and efficient in rough set reduction field due to their strong
convergence properties. Our algorithms were implemented in
the C++ language and their parameters settings are chosen in
accordance with the recommendations of Clerc [23] and Liu
[24]. The computation environment was an Intelr CoreTM

Duo CPU T2250 @1.73 GHz processor with 1G memory.
Specific parameter settings for the algorithms are described
in Table II, where L is the length of condition attributes.
Each experiment (for each algorithm) was repeated 10 times
with different random seeds. The average fitness values of
the best solutions throughout the optimization run were
recorded. The average number of surplus property and the
number of optimal solutions in 10 trials are shown in
Figure 3. The fuzzy swarm algorithm usually achieves better
results than DR method. In addition, multiple fuzzy swarm
usually produces multiple candidate reducts, allowing for the
possibility of multi-knowledge extraction.



Table I
DATASET CLEANING.

Before Preprocessing After Preprocessing
Item Environment Psychology Genotype Total Family Psychology Genotype Total

Column 63 2 2 67 16 2 2 20
Record 1233 1233 2486 2486 578 578 578 578

Figure 3. Number of attributes depending on decision variables.

According to the experimental data and results, the fol-
lowing rules are extracted:

1) The characteristics of the young-offenders are as fol-
lows, especially these from the single-parent family:
economic condition is in the low middle level; EPQ-
P score is high; junior high school educational level;
DRD4 is middle-sized and MAOA is the third type or
the fourth. The confidence is 79%.

2) The characteristics of the minority nationality are as
follows: education level is low; unemployed; economic
condition is poor and EPQ-P is the middle score or the
high. The confidence is 72%.

3) The characteristics of the adult-offenders from east of
Chongqing are as follows: EPQ-N score is middle or
high and most of their educational level is highly-
educated. The confidence is 68%.

4) The characteristics of the prisoners are as follows:
DRD4 is abnormal; EPQ-P and EPQ-N scores are
middle or high; MAOA is the fifth type and economic
condition is the lower middle level and some are
unemployed. The confidence is 65%.

5) The characteristics of the prisoners are as follows: they
are bibulous; EPQ-P score is middle or high; economic

condition is in the lower middle level; term of penalty
is longer and DRD4 is abnormal, most of them are
from east of Chongqing. The confidence is 70%.

6) The characteristics of the adult-offenders are as fol-
lows: their childhood is abused; EPQ-P and EPQ-N
scores are middle or high; economic condition is in the
lower middle level and some are unemployed; term of
penalty is longer and educational level is junior high
school. The confidence is 71%.

These results are helpful to further understand the factors
of violent crime.

VI. CONCLUSIONS AND FURTHER WORKS

This paper presented a novel fuzzy swarm rough set to
analyze three kinds of combination factors, i.e. psycho-
logical, environmental and genetic factors. We evaluated
the performance of our approach using the violent factor
datasets and the corresponding computational experiments.
Empirical results indicate that our approach is ideal for all
the considered problems and the fuzzy swarm optimization
technique outperformed the dynamic reducts (DR) approach
by obtaining multiple reductions for the combination factor
datasets. Although some knowledges should be analyzed
and verified the correctness by neuroscientists further, the
approach is helpful for violent behavior analysis. More
methods [25-27] and some detailed underlying mechanism
should be investigated further.
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