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a  b  s  t  r  a  c  t

Prediction  of  diseases  would  help  physicians  to make  informal  decision  regarding  the type  of  treatment.
Jaundice  is the  most  common  condition  that  requires  medical  attention  in  newborn  babies.  Although
most  newborns  develop  some  degree  of  jaundice,  a  high  level  bilirubin  puts  a newborn  at  risk  of  biliru-
bin encephalopathy  and  kernicterus,  which  are  rare but  still  occur  in Egypt.  This  paper  presents  a  new
vailable online 16 December 2011

eywords:
eighted rough set

eonatal jaundice

weighted  rough  set framework  for early  intervention  and  prevention  of neurological  dysfunction  and
kernicterus  that  are  catastrophic  sequels  of  neonatal  jaundice.  The  obtained  results  illustrate  that  the
weighted  rough  set can  provide  significantly  more  accurate  and  reliable  predictive  accuracy  than  well
known  algorithms  such  as  weighted  SVM and  decision  tree  considering  the fact  that  physicians  do  not

t  pro
lass imbalance learning
ule importance

have  any estimation  abou

. Introduction and motivation

Neonatal jaundice, although a normal transitional phenomenon
n most infants, can occasionally become more pronounced. Blood
roup incompatibilities (e.g., Rh, ABO) may  increase bilirubin
roduction through increased hemolysis. Historically, Rh isoimmu-
ization was an important cause of severe jaundice, often resulting

n the development of kernicterus. Although this condition has
ecome relatively rare in industrialized countries following the
se of Rh prophylaxis in Rh-negative women, Rh isoimmunization
emains common in developing countries [34]. About 60% of term
abies, and 80% of preterm babies, develop jaundice in their first
eek of life. 10% of breastfed babies are still jaundiced at 1 month of

ge. Rapid differentiation between the majority of babies with jaun-
ice who have no underlying disease (physiological jaundice) and
hose with pathological causes is important to detect the under-
ying disease and to prevent adverse sequelae such as bilirubin
ncephalopathy and kernicterus [1].

The increased bilirubin cause the infant’s skin and white-
ess of the eyes (sclera) to look yellow. Kernicterus, or bilirubin
ncephalopathy, is a condition caused by bilirubin toxicity to the

asal ganglia and various brainstem nuclei. In the acute phase,
everely jaundiced infants become lethargic, hypotonic and suck
oorly. If the hyperbilirubinemia is not treated, the infant becomes

∗ Corresponding author. Tel.: +20 1001615337.
E-mail addresses: halaown@gmail.com (H.S. Own), ajith.abraham@ieee.org

A. Abraham).

568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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bability  of  jaundice  appearance.
©  2011  Elsevier  B.V.  All rights  reserved.

hypertonic and may  develop a fever and a high-pitched cry. The
hypertonia is manifested by backward arching of the neck (retro-
collis) and trunk (opisthotonus). Surviving infants usually develop
a severe form of athetoid cerebral palsy, hearing loss, dental dyspla-
sia, paralysis of upward gaze and, less often, intellectual and other
handicaps [1].

Medical databases have accumulated large quantities of infor-
mation about patients and their medical conditions. Relationships
and patterns within these data could provide new medical knowl-
edge [2–5]. Analysis of medical data is often concerned with
treatment of incomplete knowledge, with management of inconsis-
tent pieces of information and with manipulation of various levels
of representation of data. Over the past two  decades, several tradi-
tional multivariate statistical classification approaches, such as the
linear discriminate analysis, the quadratic discriminate analysis,
and the logic analysis, have been developed to address the classi-
fication problem. More advanced and intelligent techniques have
been used in medical data analysis such as neural network, Bayesian
classifier, genetic algorithms [6–8], fuzzy theory, and rough set.
Other approaches like case-based reasoning and decision trees
[9,10] are also widely used to solve data analysis problems.

All these techniques haves its own  properties and features
including their ability of finding important rules and information
that could be useful for the medical field domain. Each technique
contributes a distinct methodology for addressing problems in its

domain.

Rough set theory [11–13] is a fairly new intelligent technique
that has been applied to the medical domain, and is used for
the discovery of data dependencies, evaluates the importance of

dx.doi.org/10.1016/j.asoc.2011.11.025
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:halaown@gmail.com
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ttributes, discovers the patterns of data, reduces all redundant
bjects and attributes, and seeks the minimum subset of attributes.
oreover, it is being used for the extraction of rules from databases.
ne advantage of the rough set is the creation of readable “if-then”

ules. Such rules have a potential to reveal new patterns in the data
aterial. Rough set based method assumes that the target classes

hare similar prior probabilities. However, in many real world prob-
ems, especially in medical applications almost all the examples are
abeled as one class, while far fewer examples are labeled as other
lasses. When the class distribution of a data set is skewed, the
raditional rough set based method is biased to the majority class,
nd therefore performs poorly in recognition of the minority class
ecause the priori knowledge of class distribution is not taken into
ccount. Recently, there are few research works introducing a prior
nowledge about samples into rough set. Hu et al. [17] assigned
ith each sample x its probability P(x). Stefanowski et al. [18] pro-
osed the removing and filtering to enhance the performance of
ough when the class distribution of a data set is skewed. Liu et al.
14] introduced weights to represent the class imbalance problem.
hey select the significant attributes by design a weighted attribute
eduction algorithm based on Guiasu weighted entropy. Finally
he weighted rule extracted by introducing a weighted heuristic
trategy into LEM2 algorithm.

However, all the previous work did not investigate the method
f building information table. That is how to assign a weigh to each
ample to balance the biased distribution of samples.

In this paper we apply class equal sample weighting to build a
eighted information table. By using this method, samples belong-

ng to majority class has smaller weight while samples in the
inority class has larger weight. Then a weighted attribute reduc-

ion algorithm based on the significance of the attribute is applied
o find the reduct set. Finally, a set of diagnosis rules are extracted
ased on a modified version of MLEM2  called as a weighted MLEM2
lgorithm. This process leads towards the final goal of generating
iagnosis rules from information or decision system of the Egyptian
eoNatal Jaundice database. The dataset comprises of 808 samples

rom newborns from January to December 2007 in Neonatal Inten-
ive Care Unit in Cairo of Egypt to predict cases that will develop
xtreme hyperbilirubinemia with total serum bilirubin (TSB) level
f greater than or equal to 428 �mol/L (≥25 mg/dL) for early inter-
ention and prevention of neurological dysfunction and kernicterus
hat are catastrophic sequels of neonatal jaundice.

This paper is organized as follows: Section 2 gives a brief
ntroduction to the rough sets. Section 3 discusses the proposed

eighted rough set data analysis scheme in detail. The motivation
nd characteristics of NeoNatal Jaundice datasets are presented
n Section 4. Experimental analysis and discussion of the results
re described in Section 5. Finally, conclusions are presented in
ection 6.

. Rough sets: basic notation

.1. Information system and approximation

efinition 1 ((Information system)). Information system is a tuple
U, A), where U consists of objects and A consists of features. Every

 ∈ A corresponds to the function a : U → Va where Va is the value
et of a. In the applications, we often distinguish between condi-
ional features C and decision feature D, where C ∩ D = �. In such
ases, we define decision systems (U, C, D).
efinition 2 ((Indiscernibility relation)). Every subset of features
 ⊆ A induces indiscernibility relation:

ndB =
{

(x, y) ∈ UXU : ∀a ∈ Ba(x) = a(y)
}

(1)
omputing 12 (2012) 999–1005

for every x ∈ U, where is an equivalence class [x]B in the partition of
U defined by IndB.

Definition 3 ((Lower and upper approximation)). In the rough sets
theory, the approximation of sets is introduced to deal with incon-
sistency. A rough set approximates traditional sets using a pair of
sets named the lower and upper approximation of the set. Given
a set B ⊆ A, the lower and upper approximations of a set Y ⊆ U are
defined by, respectively:

B-Y =
{

x|[x]B ⊆ X
}

B̄Y = {x|[x]B ∩ X /= �} (2)

Definition 4 ((Lower approximation and positive region)). The pos-
itive region POSC(D) is defined by

POSC (D) =
⋃

X:X ∈U/IndD

C-X; (3)

POSC(D) is the set of all objects in U that can be uniquely classified
by elementary sets in the partition U/IndD by means of C [15].

Definition 5 ((Upper approximation and negative region)). The neg-
ative region NEGC(D) is defined by

NEGC (D) = U −
⋃

X:X ∈ U/IndD

C̄X (4)

that is the set of all objects can be definitely ruled out as member
of X.

Definition 6 ((Boundary region)). The boundary region is the dif-
ference between upper and lower approximations of a set X that
consists of equivalence classes having one or more elements in
common with X; it is given by the following formula:

BNDB(X) = B̄X − B-X (5)

a rough set can be characterized using the accuracy of approxima-
tion as defined below

˛B(X) =
∣∣B-X
∣∣∣∣B̄X
∣∣ , (6)

where |•| denotes the cardinality of a set. X is definable with respect
to B if ˛B(X) = 1, otherwise X is rough with respect to B.

2.2. Reduct and core

Definition 7 ((Degree of dependency)).  Given a decision system, the
degree of dependency of D on C can be defined as

�(C, D) =
∣∣POSC (D)

∣∣∣∣U∣∣ , (7)

Definition 8 ((Reduct)).  Given a classification task related to the
mapping C → D. A reduct is a subset R ⊆ C such that

�(C, D) = �(R, D) (8)

and none of proper subsets of R satisfies analogous equality.

Definition 9 ((Reduct set)). Given a classification task mapping a
set of variables C to a set of labeling D, a reduct set is defined with
respect to the power set P(C) as the set R ⊆ P(C) such that:
Red =
{

A ∈ P(C) : (A, D) = (C, D)
}

.

That is, the reduct set is the set of all possible reducts of the equiv-
alence relation denoted by C and D.
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he reduct set is a minimal subset of attributes that preserves
he degree of dependency of decision attributes on full condition
ttributes. The intersection of all the relative reduct sets is called
ore.

.3. Significance of the attribute

Significance of features enables us to evaluate features by
ssigning a real number from the closed interval [0,1], expressing
ow important a feature is.

efinition 10 ((Significance)). For any feature a ∈ C, we define its
ignificance � with respect to D as follows:

(a, C, D) =
∣∣POSC\{a}(D)

∣∣∣∣POSC (D)
∣∣ . (9)

Based on the significance of an attribute, a heuristic attribute
eduction algorithm can be designed to find a reduct by selecting
n attribute with maximum significance interactively [16].

. Weighted rough set framework

In this research, we apply class equal sample weighting to build
 weighted information table. Then a weighted attribute reduction
lgorithm based on the significance of the attribute is applied to
nd the reduct set. Finally, a set of diagnosis rules are extracted
ased on a modified version of MLEM2  called as a weighted MLEM2
lgorithm. This process leads towards the final goal of generating
iagnosis rules from information or decision system of the Egyp-
ian NeoNatal Jaundice database. Fig. 1 shows the overall steps in
he proposed weighted rough sets data analysis framework. The
ollowing sections illustrate each step in detail.

.1. Class equal sample weighting (CSW)

In the traditional rough set, all samples have equal weight with-
ut considering the distribution of samples. However, in CSW,
amples belonging to majority class has smaller weight while sam-
les in the minority class has larger weight. Algorithm 1 introduces
he main steps to calculate the sample weight.

.2. Weighted relevant attribute extraction and reduction

The basic philosophy of rough sets is to reduce the attributes
n the data set based on the information content of each attribute
r collection of attributes such that there is a mapping between
imilar objects and a corresponding decision class. In general, not
ll of the information contained in a data set is required; many
f the attributes may  be redundant in the sense that they do not
irectly influence which decision class a particular object belongs
o. In decision tables, there often exist conditional attributes that do
ot provide (almost) any additional information about the objects.
o, we should remove those attributes since it reduces complexity
nd cost of decision process [19–22].

lgorithm 1. Building weighted information table algorithm

Input: information table S
Output: weighted information table WS

for each sample ai ∈ A
1) for each decision class dj ∈ D
2) if ai ∈ dj then
3) wi ← 1

(n(D)×n(Aj )
, where,

4) n(D) is the number of decision classes and,

n(Aj), is the number of samples classified as dj

For the new weighted information table the weights generated
y Algorithm 1 do not change the equivalence relation and do not
Fig. 1. Weighted rough set data analysis framework.

change the upper and lower approximation of arbitrary subset X ∈ A.
However, the introduced weights change the accuracy approxima-
tion of X [14]. This will lead to rewrite Definition 6 to introduce a
weight into approximation accuracy such that:

Definition 11 ((Weighted approximation accuracy)).  The weighted
approximation accuracy can be defined as follows:

˛W
B (X) =

∣∣B-X
∣∣
W∣∣B̄X
∣∣
W

, (10)

where
∣∣B-X
∣∣
W
=∑xi ∈ B-Xw(xi), and

∣∣B̄X
∣∣
W
=∑xi ∈ B̄Xw(xi), which

represents the weighted cardinality of BX and B̄X , respectively, and
w(xi) is a weight associated with the element xi ∈ X.

Definition 12 ((Weighted degree of dependency)).  Given a weighted
decision system, the weighted degree of dependency of D on C can
be defined as:

�W (C, D) =
∣∣POSC (D)

∣∣
W∣∣U∣∣

W

(11)

Definition 13 ((Discrimination factor)).  It measures the effect of
removing the attribute ai ∈ A from an information table by measur-
ing the difference between �W (C, D) and �W (C − {a}, D).
We introduce a weighted reduct and relevant attribute extrac-
tion algorithm based on the correlation factor, weighted degree of
dependencies and the discrimination factors. The main steps of the
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educt generation algorithm are provided below (refer to Algorithm
).

.3. Weighted rule generation and classification

The generated reducts are used to generate decision rules. The
ecision rule, at its left side, is a combination of values of attributes
uch that the set of (almost) all objects matching this combina-
ion have the decision value given at the rule’s right side. The rule
erived from reducts can be used to classify the data. The set of
ules is referred to as a classifier and can be used to classify new
nd unseen data.

lgorithm 2. Weighted attribute reduction

Input: Weighted information table (WS).
Output: weighted reduct sets WRfinal.
Let R = ∅

1) For each conditional attribute c ∈ C
Calculate ε(c,D), the correlation factor between c ∈ C and the decision

attributes D. If ε(c,D) > 0
then R = R ∪ c
end for.

2) Let P a partition of R such that ∪P = R and A ∩ B = ∅ if A ∈ P, B ∈ P, A /= B.
3)  For each

pi ∈ P, i = 1, . . . , n where n is the number of sets in P
Calculate �W (pi, D).
End for.

4) Choose pi such that �W (pi, D) = max(�W (pi, D)).
5) Let WRfinal = ∅

6) For each attribute c ∈ pi calculate its discrimination factor �c .
7)  Let cmax = max(�c)
8) Let pi = pi − cmax and WRfinal = WRfinal ∪ cmax

9) For each c ∈ pi add c to cmax and calculate the discrimination factor of the
new combination.
10) Choose c which satisfies max  discrimination factor with cmax let cmax = c
11) Repeat steps 8 to 10 until all attributes in pi are processed

LEM2 algorithm, a rule induction algorithm used by LERS (Learn-
ng from Examples based on Rough Set theory), accepts input
ata sets only with symbolic attributes. MLEM2, a new algorithm,
xtends LEM2 capabilities by inducing rules from data with both
ymbolic and numerical attributes including data with missing
ttribute values MLEM2  accuracy is comparable with accuracy of
EM2 inducing rules from pre-discretized data sets. However, com-
ared with other members of the LEM2 family, MLEM2 produces
he smallest number of rules from the same data [23,24]. In order
o introduce an imbalance learning concept into a traditional rough
et, a modified version of MLEM2  is introduced. The algorithm is
ivided into two steps the preprocessing phase and weighted rule

nduction phase. The preprocessing phase describe how MLEM2
nduces rules from data with numerical attributes. Rule induction
n MLEM2  is conducted in the same way as in well known LEM2
ule induction algorithm, the only difference is in the kernel part
f LEM2 algorithm. Since LEM2 not taking account of imbalance
earning; therefore, the inner while loop will be changed to adapt
he introduction of weight into rough set.

Let B be a nonempty lower or upper approximation of a concept
epresented by a decision-value pair (d,w). Set B depends on a set

 of attribute value pairs t = (a,v) if and only if:
 /= [T] =
⋂
t ∈ T

[t] ⊆ B (12)

here [(a,v)] denotes the set of all examples such that for attribute
 its values are v [23].

The main steps of the Rule Generation and classification algo-
ithm are provided below (refer to Algorithm 3).
omputing 12 (2012) 999–1005

Algorithm 3. Weighted rule induction

Input: weighted reduct sets WRfinal = {wr1 ∪ wr2 ∪ wr ∪ . . . wrn}
Output: set of weighted rules
Phase 1 (preprocessing)
Input: weighted reduct sets WRfinal = {wr1 ∪ wr2 ∪ wr ∪ . . . wrn}
Output: a set of blocks represent the search space B

1) For each numerical attribute wr = (x1, x2, . . . , , xn) ∈ WRfinal do
2)  Sort the values of wr,
3)  For the sorted set of wr,  compute a set of cut points Q = (q1, q2, . . . , qn−1)
where qj = xi+xi+1

2
4) For each qjdefine qj1 and qj2, such that qj1 contains all cases for which values
of  the
Numerical attribute are smaller than qj , and qj2 contains all cases for which
values of the numerical attribute are larger than qj .

Phase 2 (processing)
Input: a set of blocks represent the search space B
Output: set of weighted rules

1) G := B;
2) WT  := Ф;
3) While G /= ˚
4) Begin
5) T := Ф;
6) T(G) := {t:[t] ∩ G /= ˚},
7)  While T = Ф or [T]/⊂B
8) Begin
9) Select a pair t ∈ T(G)such that the cardinality of [t] ∩ GW is maximum; if a tie
occurs, select a pair t ∈ T(G)with the smallest cardinality of [t]W ; if another tie
occurs, select first pair;
10) T := T ∪ {t},
11) G := [t] ∩ G
12) T(G) := {t:[t] ∩ G /= ˚}
13)  T(G) := T(G) − T
14) end {while}
15) for each t ∈ T do
16) if [T − {t}] ⊆ B
17) then T:=T − {t}
18) WT : WT  ∪ {T}
19)G:=B − ∪T ∈ WT [T]
20) end while
21) for each T ∈ WT do

22) if ∪S ∈ WT−{T} [S] = B then WT:=WT  −
{

T
}

3.4. Rule evaluation

When rules are generated, the number of objects that generate
the same rule is typically recorded. The quality of rules that are
generated based on attributes included in the reduct is connected
with its quality. We  would be especially interested in generating
rules which cover possibly largest parts of the universe. Covering
the universe space with more general rules implies smaller size of a
rule set. We  could, therefore, use this idea in measuring the quality
of a reduct. If a rule is generated more frequently across different
rule sets, we  can believe that this rule is more important than other
rules. The rule importance measure [25] RI is used as an evaluation
to study the quality of the generated rule. It is defined by:

RI =
�r

�r
(13)

where �r is the number of times where a rule appears in the set of
generated rules and �r is the number of total cases.

3.5. Evaluation metrics for class imbalance learning

The measures of the quality of classification are built from a
confusion matrix (shown in Table 1) which records correctly and
incorrectly recognized examples for each class. Accuracy is the most
common evaluation metric for most traditional application. But
accuracy is not suitable to evaluate imbalanced data set, since many

practitioners have observed that for extremely skewed class distri-
bution the recall of the minority class is often 0, which means that
there are no classification rules generated for the minority class
[26]. For this reason, additional metrics are used.
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Table  1
Confusion matrix.

Predicted class

True
class

C1 C2 C3 . . . CK

C2 n11 n12 . . ..  n1k

C3 n21 n22 n2k
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Table 2
Neonatal jaundice data.

Field Description

Sex Male or female
Age/day Postnatal age per day on admission
gest. Age Gestational age [either F = full term (≥ 38

weeks), N = near term (35–37 weeks) or
P  = preterm (≤34 weeks)]

Wt/g Weight per gram on admission
Onset of J at day Postnatal age of patient per day in which onset

of jaundice was occurred
Days of adm. Days of admission in hospital (duration of stay

in  hospital)
Peak of T bil Peak of total bilirubin level (mg/dl)
bil  peak at day Postnatal age of patient per day in which total

bilirubin peak was recorded
T  bil d of presentation Total bilirubin level (mg/dl) at day of

presentation.
D  bil d of presentation Direct bilirubin level (mg/dl) at day of

presentation.
T bil 24h later Total bilirubin level (mg/dl) after 24 h after

presentation
D  bil 24h later Direct bilirubin level (mg/dl) after 24 h after

presentation
T bil after 2day Total bilirubin level (mg/dl) after 2 days after

presentation
D bil after 2day Direct bilirubin level (mg/dl) after 2 days after

presentation
T  bil before disc Total bilirubin level (mg/dl) before discharge

from hospital or death
D bil before disc Direct bilirubin level (mg/dl) before discharge

from hospital or death
Pattern According to type of jaundice, patients are

classified into three pattern along their
duration of stay: (1) patients with indirect
hyperbilirubinemia, (2) patients with indirect
hyperbilirubinemia then changed into direct
. . . . .

.  . . . .
CK nk1 nk2 nkk

In this study, we have used the following performance mea-
ures:

P(i)RATE =
∑k

i=1TP(i)(∑k
i=1TP(i) +

∑k
i=1FN(i)

) (14)

ecall(i) =
nii∑k
j=1nij

(15)

recision = nii∑k
j=1nji

(16)

(i) − Measure = 2 × Recalli × Precisioni

Recalli + Precisioni
(17)

-mean =
(

k∏
i=1

Ri

)1/k

(18)

The previous measures are popular evaluation metrics for
mbalance problems [27]. It is clear that neither recall nor pre-
ision is adequate by themselves. F-Measure is suggested in [28]
o integrate these two measures as an average. It is obvious that
-measure will be high when both the recall and precision are
igh. When the performances of each class are interested, class
lassification performance of each class should be equally repre-
ented in the evaluation measure. Kubat et al. [29] suggested the
-mean as the geometric means of recall values of every class. As
ach recall value representing the classification performance of a
pecific class is equally accounted, G-mean is capable to measure
he balanced performance among classes of a classification output
30,31].

. Egyptian NeoNatal Jaundice data set collection

A total of 808 medical records were collected from newborns
uring January to December 2007 in Neonatal Intensive Care Unit

n Cairo, Egypt. Retrospective data of all neonatal jaundice cases
ere collected from patient’s files and descriptive analysis of

hese data was done. These data include the following: sex, ges-
ational age, postnatal age, and weight at day of presentation, the
ay of onset of jaundice after delivery and duration of stay in
ospital.

The ratio of 474 male to 334 female was 1.4:1. There were
43 full terms (79.58%), 53 near terms (6.55%) and 113 preterms
13.98%). The mean postnatal age of patients on admission was
.75 ± 4 days (ranging from 1 to 20 days except one case diag-
osed as Crigler–Najjar syndrome, was admitted to NICU at 60
ays old). The median age of onset of jaundice was  3 days with the

nterquartile range (IQR) of one day. The mean weight of patients
as 2658.6 ± 710 g (ranging from 740 to 4900 g). The mean dura-

ion of stay is of 7.21 ± 8.72 days (ranging from 1 to 86 days).
The total and direct bilirubin levels were measured several times
or the studied patients with the detection of peak of total bilirubin
nd the day on which the peak occurred. The peak of total bilirubin
anged from 6.5 to 65.5 mg/dl with a mean value of 24.55 ± 9.16 at
ean age 6.2 ± 3.58 days (ranging from 1 to 33 days). The median
hyperbilirubinemia and (3) patients with
direct hyperbilirubinemia

peak of total bilirubin was  23 mg/dl with median age for the peak
was the 5 days. Among 808 studied cases, a peak of total bilirubin
was reported in files of 781 cases.

The total bilirubin level was  measured at day of presentation,
then after 24 h later, then after 2 days, afterwards before dis-
charge or death. The mean values were 23.1 ± 9.87 (ranging from
2.1 to 65.5 mg/dl), 19.85 ± 6.76 (ranging from 4.9 to 49.5 mg/dl),
16.09 ± 5.84 (ranging from 3.1 to 51.3 mg/dl) and 12.34 ± 6 (rang-
ing from 0.74 to 51.7 mg/dl), respectively. The direct bilirubin level
was measured at the same time with total bilirubin. The mean val-
ues were 1.55 ± 3.4 (ranging from 0.02 to 38 mg/dl), 1.58 ± 3.21
(ranging from 0.03 to 25.36 mg/dl), 1.65 ± 3.35 (ranging from 0.01
to 24.8 mg/dl) and 1.22 ± 2.64 (ranging from 0.01 to 25.36 mg/dl),
respectively.

These data are presented for prediction of the risk of neonatal
jaundice and extreme hyperbilirubinemia of newborns. The data
set of 808 records, 16 predictor variables and 1 target variable, was
constructed. The target variable ‘pattern’ has three possible val-
ues “1” (indirect hyperbilirubinaem), “2” (changed from indirect to
direct hyperbilirubinaemia) and “3” (direct hyperbilirubinaemia).
Table 2 shows the predictive attributes and their description, used
in our work.

Table 3 describes the class distribution within the data set. As
shown in Table 3, class B and C are two small classes which posses
only 6% and 3% samples, respectively.

5. Experimental analysis and discussion
Two  experiments were conducted to evaluate the weighted
rough set framework, for all of the following experiments 60%
split was  used for training and the remaining 40% was used for
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Table 3
The 808 data set class distributions.

Index Class name Class size Class distribution

A Indirect
hyperbilirubinaem

737 91%

B  Changed from
indirect to direct
hyperbilirubi-
naemia

46 6%

C  Direct hyperbiliru-
binaemia

25 3%

Table 4
The 525 data set class distributions.

Index Class name Class size Class distribution

A Indirect hyperbilirubinaem 265 82%
B  Changed from indirect to direct 41 13%
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Table 5
Part of generated rules.

Rule No. Rule

R1 (D bil 24h later = [0.1,8.645])&(“D bil before
disc = [0.012.195]”) ⇒ (Pattern = {A[147]})

R2 (“T bil after 2day = [4.59,26.0]”)&(“D bil before
disc = [0.01,2.195]”) ⇒ (Pattern = {A[134]})

R3 (“D bil d of presentation” = “[0.02,11.9]”)&(“T bil before
disc” = “[1.1,16.75]”)&(“D bil before
disc” = “[2.195,5.045]”) ⇒ (Pattern = {B[10]})

R4 (“D bil d of presentation = [0.02,11.9]”)&(“T bil after
2day = [4.59,26.0]”)&(“D bil before
disc = [5.045,25.36]”) ⇒ (Pattern = {B[10]})

R5 (“T bil before disc = [16.75,51.7]”)&(“D bil before
disc=[0.01,2.195]”) ⇒ (Pattern = {A[30]})

R6 (“D bil 24h later = [0.1,8.645]”)&(“T bil after
2day = [4.59,26.0]”)&(“T bil before
disc = [16.75,51.7]”) ⇒ (Pattern = {A[19]})

T
C

hyperbilirubinaemia
C  Direct hyperbilirubinaemia 19 6%

esting. The first experiment was conducted using the 808 records.
he second experiment was conducted using 325 records of cases
hich had extreme hyperbilirubinemia the class distribution of

his data set shown in Table 4. The computations of rules have
een done only on training set. The results of computations of
ules were applied to the classification of objects from the tested
ataset. We  can see from Tables 3 and 4 that the class distribution
f each data set is imbalanced. The ratio of majority class A to class

 and C is 16.02% and 29.48%, respectively, in Table 3. Moreover,
n Table 4 the ratio was 6.46% and 13.94%.

By applying the introduced reduct generation algorithm (refer
o Algorithm 2) we compute the weighted dependency degree and
he classification quality for each attribute. We  reach the minimal
umber of reducts that contains a combination of attributes which
as the same discrimination factor. The final generated reduct sets,
hich are used to generate the list of rules for the classification,

re:

‘‘D bil d of presentation’’, ‘‘D bil 24 h later’’, ‘‘T bil after 2 day’’,

‘‘T bil before disc’’, ‘‘D bil before disc’’}

The entire attributes generated are all core attributes. Using the
inimal reduct set, a set of rules is generated. Part of these rules is

isted in Table 5.
As a result of our new approach, we observed very good rules like

1 and R2 the first one “R1” is true for 147 cases with rule impor-

ance = 0.89. As well as the second rule “R2” which has support as
34 cases with rule importance = 0.76.

In order to evaluate the performance of the proposed frame-
ork, comparative experiments are conducted. Weighted SVM and

able 6
onfusion matrix and performance measures for 808 data set.

Predicted Measure TPR

A B C

Actual
A 263 0 0

Proposed
method

1 

B  0 16 1 1 

C  0 0 7 0.8

Actual
A 293  1 0

Decision
tree

0.9
B  4 12 2 0.6
C  0 4 7 0.6

Actual
A  293 1 0

LIBSVM
0.9

B 0  13 5 0.7
C  2 3 6 0.5
R7 (“D bil d of presentation = [11.9,38] ⇒ (Pattern = {C[7]})

decision tree (C4.5) were employed as comparative methods with
our proposed framework. LIBSVM [32] was used to implement
weighted SVM for classification problem. LIBSVM provides an effi-
cient parameter selection tool using cross validation via parallel
grid search under the kernel of the radial basis function type. Deci-
sion tree [10] is formalism for expressing mappings from attribute
values to classes and consists of tests or attribute nodes linked to
two or more sub trees and leafs or decision nodes labeled with
a class which means the decision. Because of the very simple
representation of accumulated knowledge, they also give us the
explanation of the decision, and that is essential in medical appli-
cations. Weka package [33] was  utilized to construct a decision
tree.

Respecting to classification performance in Table 6; perfor-
mance on class A reported by F-measure is approximately the same
in the three methods since it is the majority class. By applying our
method performances of classes B and C are significantly better
than the other two  methods with F-measure and also the overall
G-mean. The F-measure of class B using decision tree is better than
that of weighted SMV. But weighted SVM achieves best F-measure
than decision tree for class C.

As illustrated in Table 7, the classification quality of class B and
class C was improved by more than 11% when compared with the
other two  methods but the proposed method still outstand the
other two  methods by more than 19%. Also like the 808 data set,
the F-measure of class B using decision tree is better than that of
weighted SMV. But weighted SVM achieves best F-measure than
decision tree for class C.

As reported in Table 7, there are only two misclassified cases; the

experts conclude that the reason of misclassification is different for
each case. The first case patient number 24, she is a case of indirect
hyperbilirubinemia along her duration of stay (class A) but an error

ATE Recall Precision F-Measure G-Mean

1.00 1.00 1.00
0.980.94 1.00 0.97

8 1.00 0.88 0.93

9 0.99 0.99 0.99
0.746 0.66 0.7 0.68

3 0.63 0.63 0.63

9 0.99 0.97 0.98
0.7322 0.72 0.76 0.74

4 0.54 1 0.7
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Table  7
Performance measure of 325 data set.

Predicted Measure TPRATE Recall Precision F-Measure G-Mean

A B C

Actual A 103 0 1
Proposed
method

0.99 0.99 0.99 0.99
0.98B  1 16 0 1 0.94 1.00 0.97

C 0 0 9 0.9 1.00 0.90 0.95

Actual A  103 2 0
Decision
tree

0.98 0.98 0.98 0.98
0.80B 1  13 1 0.87 0.86 0.72 0.788

C  1 3 6 0.6 0.6 0.85 0.706

0.99
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Actual A  104 1 0
LIBSVMB  2 13 0 

C 3 1 6

ccurred and this case classified as class C due to high levels of direct
ilirubin at day of presentation and 24 h later (approximately 18.8%
nd 19% of total bilirubin levels, respectively).

. Conclusions

Classical rough set rough just works in nominal domain and
reats each class as equal weight. Moreover, Classification of data
ith imbalanced class distribution has posted a significant draw-

ack of the performance attainable by most standard classifier
earning algorithm. In this paper, we have proposed a weighted
ough set framework for early intervention and prevention of neu-
ological dysfunction and kernicterus that are catastrophic sequels
f neonatal jaundice. The proposed framework tackles the class
mbalance problem with multiple classes.

In our collected data set, the ratio of majority class to the other
inority classes is 16.02% and 29.48%, respectively.
The performance of the proposed framework on minority

lasses increases significantly reported by recall value, F-measure
nd G-mean compared with weighted SVM and decision trees.
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