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a b s t r a c t

In his seminal paper published in 2002, Passino pointed out how individual and groups of
bacteria forage for nutrients and how to model it as a distributed optimization process,
which he called the Bacterial Foraging Optimization Algorithm (BFOA). One of the major
driving forces of BFOA is the reproduction phenomenon of virtual bacteria each of which
models a trial solution of the optimization problem. During reproduction, the least health-
ier bacteria (with a lower accumulated value of the objective function in one chemotactic
lifetime) die and the other healthier bacteria each split into two, which then starts explor-
ing the search place from the same location. This keeps the population size constant in
BFOA. The phenomenon has a direct analogy with the selection mechanism of classical evo-
lutionary algorithms. In this letter we provide a simple mathematical analysis of the effect
of reproduction on bacterial dynamics. Our analysis reveals that the reproduction event
contributes to the quick convergence of the bacterial population near optima.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

To tackle several complex search problems of real world, scientists have been looking into the nature for years-both as
model and as metaphor-for inspiration. Optimization is at the heart of many natural processes like Darwinian evolution,
group behavior of social insects and the foraging strategy of other microbial creatures. Natural selection tends to eliminate
species with poor foraging strategies and favor the propagation of genes of species with successful foraging behavior, as they
are more likely to enjoy reproductive success.

Since a foraging organism or animal takes necessary action to maximize the energy utilized per unit time spent for for-
aging, considering all the constraints presented by its own physiology such as sensing and cognitive capabilities, environ-
ment (e.g. density of prey, risks from predators, physical characteristics of the search space), the natural foraging strategy
can lead to optimization and essentially this idea can be applied to real-world optimization problems. Based on this concep-
tion, Passino proposed an optimization technique known as Bacterial Foraging Optimization Algorithm (BFOA) [1–4] . Until
date, the algorithm has successfully been applied to real world problems like optimal controller design [1,2], harmonic esti-
mation [5], transmission loss reduction [6], pattern recognition [7], controller synthesis for active power filters [8], and
power system optimization [9].

BFOA is a newly added member in the coveted realm of Swarm Intelligence [10–15], which also includes powerful opti-
mization techniques like the Particle Swarm Optimization (PSO) [11,16] and Ant Colony Optimization (ACO) [17]. On the
algorithmic front, several researchers extended the basic BFOA to deal with complex and multi-modal fitness landscapes,
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dynamical environments and to obtain efficient convergence behavior [18–23]. BFOA has also been hybridized with a few
other state-of-the-art evolutionary computing techniques [24–26] in order to achieve robust and efficient search perfor-
mances. An interesting characteristic feature of BFOA is that it has its own local search mechanism through the computa-
tional chemotaxis step and reproduction with elimination-dispersion helps in global search. Over certain real-world
optimization problems, BFOA has been reported to outperform many powerful optimization algorithms like GA, PSO, etc.
in terms of convergence speed and final accuracy, for example, see [5,8,9,25,26]. As pointed out by Das et al [27], unlike
PSO and Differential Evolution (DE), the uniqueness of the stability criteria of BFOA remains in the fact that in order to ensure
stability of the chemotactic dynamics in BFOA, the step-size parameter must be adjusted (i.e. made adaptive) according to
the current location of the bacterium and its current fitness. The efficiency of the algorithm in solving real parameter opti-
mization problems has made it a potential optimization algorithm, worth investing research time these days.

In [28], Dasgupta et al. have provided a mathematical model of the simulated chemotaxis operation of a simple bacterial
system from the viewpoint of the classical gradient descent search [29]. Their analysis points out that the chemotaxis em-
ployed by classical BFOA, usually results in sustained oscillation, especially on flat fitness landscapes, when a bacterium cell
is close to the optima. To accelerate the convergence speed of the group of bacteria near global optima, two simple schemes
for adapting the chemotactic step-height were also proposed. This paper provides a simple mathematical analysis of another
important step in BFOA, called reproduction. During reproduction, the bacterial population is at first sorted in order of
ascending accumulated cost (value of the objective function to be optimized), then the worse half of the population contain-
ing least healthy bacteria is liquidated while all the members of the better half is split into two bacteria which start exploring
the search space from the same location on the fitness landscape. As pointed out by Passino, this phenomenon finds analogy
with the elitist-selection mechanism of the classical evolutionary algorithms (EA) [1,2,30]. Bacteria in the most favorable
environment (i.e., near an optima) gain a selective advantage for reproduction through the cumulative cost. We focus our
attention on a simple two-bacterial system working over a one-dimensional fitness landscape and verify the role of repro-
duction in the convergence behavior of the said population near global optima. Although the analysis may appear to have a
limited scope, note that this article is the first of its kind and the issues of multi-bacterial population over a multi-dimen-
sional fitness landscape are topics of further research. Here our primary objective is to provide important insight into the
operational mechanism of the artificial bacterial foraging system, acting as a global function optimizer.

2. The bacterial foraging optimization algorithm

The bacterial foraging system consists of four principal mechanisms, namely chemotaxis, swarming, reproduction, and
elimination-dispersal [1]. Below we briefly describe each of these processes and finally provide a pseudo-code of the com-
plete algorithm.

(i) Chemotaxis: This process simulates the movement of an E. coli cell through swimming and tumbling via flagella. Bio-
logically an Escherichia coli bacterium can move in two different ways. It can swim for a period of time in the same
direction or it may tumble, and alternate between these two modes of operation for the entire lifetime. Suppose
hi(j, k, l) represents ith bacterium at jth chemotactic, kth reproductive and lth elimination-dispersal step. C(i) is the size
of the step taken in the random direction specified by the tumble (run length unit). Then in computational chemotaxis
the movement of the bacterium may be represented by

hiðjþ 1; k; lÞ ¼ hiðj; k; lÞ þ CðiÞ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðiÞDðiÞ

q ; ð1Þ

where D indicates a vector in the random direction whose elements lie in [�1, 1].
(ii) Swarming: An interesting group behavior has been observed for several motile species of bacteria including E. coli and

Salmonella typhimurium, where intricate and stable spatio-temporal patterns (swarms) are formed in semisolid nutri-
ent medium [31,32]. A group of E. coli cells arrange themselves in a traveling ring by moving up the nutrient gradient
when placed amidst a semisolid matrix with a single nutrient chemo-effecter. The cells when stimulated by a high
level of succinate, release an attractant aspertate, which helps them to aggregate into groups and thus move as concen-
tric patterns of swarms with high bacterial density. The cell-to-cell signaling in E. coli swarm may be represented by
the following function.

Jccðh; Pðj; k; lÞÞ ¼
XS

i¼1

Jccðh; hiðj; k; lÞÞ

¼
XS

i¼1

�dattractant exp �wattractant

Xp

m¼1

ðhm � hi
mÞ

2

 !" #
þ
XS

i¼1

hrepellant exp �wrepellant

Xp

m¼1

ðhm � hi
mÞ

2

 !" #
; ð2Þ

where Jcc(h, P(j, k, l)) is the objective function value to be added to the actual objective function (to be minimized) to present a
time varying objective function, S is the total number of bacteria, p is the number of variables to be optimized, which are
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present in each bacterium and h = [h1, h2, . . . , hp]T is a point in the p-dimensional search domain. dattractant, wattractant, hrepellant,
wrepellant are different coefficients that should be chosen properly.

(iii) Reproduction: The least healthy bacteria eventually die while each of the healthier bacteria (those yielding lower value
of the objective function) asexually split into two bacteria, which are then placed in the same location. This keeps the
swarm size constant.

(iv) Elimination and dispersal: Gradual or sudden changes in the local environment where a bacterium population lives may
occur due to various reasons, e.g. a significant local rise of temperature may kill a group of bacteria that are currently
in a region with a high concentration of nutrient gradients. Events can take place in such a fashion that all the bacteria
in a region are killed or a group is dispersed into a new location. To simulate this phenomenon in BFOA some bacteria
are liquidated at random with a very small probability while the new replacements are randomly initialized over the
search space.

The detailed pseudo-code of the complete algorithm is given below.

The BFOA Algorithm 1
Parameters:

Step 1 Initialize parameters p, S, Nc, Ns, Nre, Ned, Ped, C(i) (i = 1,2 . . . S), hi.
where,

p: Dimension of the search space
S: Total number of bacteria in the population
Nc: The number of chemotactic steps
Ns: The swimming length
Nre: The number of reproduction steps
Ned: The number of elimination-dispersal events
Ped: Elimination-dispersal probability
C(i): The size of the step taken in the random direction specified by the tumble

Algorithm
Step 2 Elimination-dispersal loop: l = l + 1.
Step 3 Reproduction loop: k = k + 1.
Step 4 Chemotaxis loop: j = j + 1.

[a] For i = 1, 2,. . ., S take a chemotactic step for bacterium i as follows.
[b] Compute fitness function, J (i, j, k, l). Let, J(i, j, k, l) = J(i, j, k, l) + Jcc(hi(j, k, l), P(j, k, l)) (i.e. add on the cell-to cell

attractant–repellant profile to simulate the swarming behavior), where, Jccis defined in (2).
[c] Let Jlast = J(i, j, k, l) to save this value since we may find a better cost via a run.
[d] Tumble: generate a random vector DðiÞ 2 Rp with each element Dm(i), m = 1,2, . . .,p, a random number on [�1,

1].
[e] Move: Let

hiðjþ 1; k; lÞ ¼ hiðj; k; lÞ þ CðiÞ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðiÞDðiÞ

q
This results in a step of size C(i) in the direction of the tumble for bacterium i.

[f] Compute J(i, j + 1, k, l) and let

Jði; jþ 1; k; lÞ ¼ Jði; j; k; lÞ þ Jccðhiðjþ 1; k; lÞ; Pðjþ 1; k; lÞÞ:

[g] Swim
(i) Let m=0 (counter for swim length).

(ii) While m < Ns (if have not climbed down too long).

� Let m = m + 1.
� If J (i, j + 1, k, l) < Jlast (if doing better), let Jlast = J(i, j + 1, k, l) and let

hiðjþ 1; k; lÞ ¼ hiðj; k; lÞ þ CðiÞ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTðiÞDðiÞ

q
and use this hi(j + 1, j, k) to compute the new J(i, j + 1, k, l) as we did in [f]

� Else, let m = Ns. This is the end of the while statement.

[h] Go to next bacterium (i + 1) if i – S (i.e., go to [b] to process the next bacterium).

A. Biswas et al. / Applied Mathematics and Computation 215 (2010) 3343–3355 3345



Author's personal copy

Step 5 If j < Nc, go to step 4. In this case continue chemotaxis since the life of the bacteria is not over.
Step 6 Reproduction:

[a] For the given kand l, and for each i = 1,2,. . .,S, let

Ji
health ¼

XNcþ1

j¼1

Jði; j; k; lÞ ð3Þ

be the health of the bacterium i(a measure of how many nutrients it got over its lifetime and how successful it
was at avoiding noxious substances). Sort bacteria and chemotactic parameters C(i) in order of ascending cost
Jhealth (higher cost means lower health).

[b] The Sr bacteria with the highest Jhealth values die and the remaining Sr bacteria with the best values split (this
process is performed by the copies that are made are placed at the same location as their parent).

Step 7 If k < Nre, go to step 3. In this case, we have not reached the number of specified reproduction steps, so we start the
next generation of the chemotactic loop.

Step 8 Elimination-dispersal: For i = 1,2 . . . ,S with probability Ped, eliminate and disperse each bacterium (this keeps the
number of bacteria in the population constant). To do this, if a bacterium is eliminated, simply disperse another
one to a random location on the optimization domain. If l < Ned, then go to step 2; otherwise end.

3. Analysis of the reproduction step in BFOA

Let us consider a small population of two bacteria that sequentially undergoes the four basic steps of BFOA over a one-
dimensional objective function. The bacteria live in continuous time and at the tth instant its position is given by h(t). Below
we list a few simplifying assumptions that were considered for the sake of gaining mathematical insight.

Assumptions 1

(i) The objective function J(h) is continuous and differentiable at all points in the search space.
(ii) The analysis applies to the regions of the fitness landscape where gradients of the function are small i.e., near to the

optima. The region of fitness landscapes between h1 and h2 is monotonous at the time of reproduction.
(iii) During reproduction, two bacteria remain close to each other and one of them must not superpose on another (i.e.

jh2 � h1j? 0 may happen due to reproduction but h2 – h1. Suppose P and Q represent the respective positions of
the two bacteria as shown in Fig. 1). At the start of reproduction h1and h2 remain apart from each other but as the
process progresses they come close to each other gradually.

(iv) The bacterial system lives in continuous time.

3.1. Analytical treatment

In our two bacterial system h1(t) and h2(t) represent the position of the two bacteria at time t and J(h1), J(h2) denote the
cost function values at those positions respectively. During reproduction, the virtual bacterium with a relatively larger value
of the cost function (for a minimization problem) is liquidated while the other is split into two. These two offspring bacteria
start moving from the same location. Hence in effect, through reproduction the least healthy bacteria shift towards the

Fig. 1. A two-bacterium system on arbitrary fitness landscape.
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healthier bacteria. Health of a bacterium is measured in terms of the accumulated cost function value, possessed by the bac-
terium until that time instant. The accumulated cost may be mathematically modeled as

R t
0 Jðh1ðtÞÞdt. For a minimization

problem, higher accumulated cost represents that a bacterium did not get as many nutrients during its lifetime of foraging
and hence is not as ‘‘healthy” and thus unlikely to reproduce. The two-bacterial system working on a single-dimensional fit-
ness landscape has been depicted in Fig. 1.

To simulate the bacterial reproduction we have to take a decision on which bacterium will split in next generation and
which one will die. This decision may be modeled with the help of the well-known unit step function u(x) (also known as
Heaviside step function [33]), which is defined as,

uðxÞ ¼ 1; if x > 0
¼ 0; if x < 0

ð4Þ

In what follows, we shall denote h1(t) and h2(t) as h1 and h2, respectively. Now if we consider that Dh1 is the infinitesimal
displacement (Dh1 ? 0) of the first bacterium in infinitesimal time Dt(Dt ? 0) towards the second bacterium in favorable
condition, i.e. when the second is healthier than the first one, then the instantaneous velocity of the first one is given by,
Dh1
Dt . Now when we are trying to model reproduction we assume the instantaneous velocity of the worse bacterium to be pro-
portional with the distance between the two bacteria, i.e. as they come closer their velocity decreases but this occurs unless
we incorporate the decision making part. So, if the first bacterium is the worse one then,

Dh1

Dt
1ðh2 � h1Þ

) Dh1

Dt
¼ �kðh2 � h1Þ ½where; �k is the proportionality constant�

) Dh1

Dt
¼ 1 � ðh2 � h1Þ ¼ ðh2 � h1Þ

ð5Þ

Since we are interested in modeling a dynamics of the reproduction operation, the decision making i.e. whether one of the
bacteria will move towards the other, can not be discrete i.e. it is not possible to check straightaway whether the other bac-
terium is at a better position or not. So a bacterium (suppose h1) will be checking whether a position situated at an infini-
tesimal distance from h1 is healthier or not and then it will move. How the first bacterium, a position situated at infinitesimal
distance from it and the second bacterium (at different time instants) will look like in a single dimensional space is clearly
depicted in Fig. 2. The health of first bacterium is given by the integral of J(h1) from zero to time t and the same for the dif-
ferentially placed position is given by the integral of J(h1 + Dh1) from zero to time t. Then we may model the decision making
part with the unit step function in the following way:

Dh1

Dt
¼ u

Z t

0
Jðh1Þdt �

Z t

0
Jðh1 þ Dh1Þdt

� �
� ðh2 � h1Þ ð6Þ

Similarly, when we consider the second bacterium, we get,

Dh2

Dt
¼ u

Z t

0
Jðh2Þdt �

Z t

0
Jðh2 þ Dh2Þdt

� �
� ðh1 � h2Þ ð7Þ

In Eq. (6),
R t

0 Jðh1Þdt represents the health of the first bacterium at the time instant t and
R t

0 Jðh1 þ Dh1Þdt represents the
health corresponding to (h1 + Dh1) at the time instant t. We are going to carry out calculations with the equation for bacte-
rium 1 only, as the results for other bacterium can be obtained in a similar fashion.

Since we are considering only the monotonous part of any function, so if h2 is at a better position, then any position, in-
between h1 and h2, has a lesser objective function value compared to h1. So we may conclude J(h1 + Dh1) is less than J(h1). In
that case we can imagine that

R t
0 Jðh1 þ Dh1Þ is less than

R t
0 Jðh1Þ as t is not too high, the functional part under consideration is

monotonous and change of h1 + dh1 with respect to t is same as that of h1. We can rewrite Eq. (6) corresponding to bacterium
1 as,

Dh1

Dt
¼ u �

Z t

0

Jðh1 þ Dh1Þ � Jðh1Þ
Dt

dt
� �

ðh2 � h1Þ

Fig. 2. Change of position of the bacteria during reproduction.
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[* Dt > 0. We know for a positive constant Dt;u x
Dt

� �
¼ uðxÞ as x and x

Dt are of same sign and unit step function depends only
upon sign of the argument.]

) Lt
Dt!0
Dh1!0

Dh1

Dt
¼ Lt

Dt!0
Dh1!0

u �
Z t

0

Jðh1 þ Dh1Þ � Jðh1Þ
Dt

dt
� �

� ðh2 � h1Þ

) Lt
Dt!0
Dh1!0

Dh1

Dt
¼ Lt

Dt!0
Dh1!0

u �
Z t

0

Jðh1 þ Dh1Þ � Jðh1Þ
Dh1

Dh1

Dt
dt

� �
� ðh2 � h1Þ

Again, J(x) is assumed to be continuous and differentiable. Lim
Dh!0

Jðh1þDh1Þ�Jðh1Þ
Dh1

is the value of the gradient at that point and
may be denoted by dJðh1Þ

dh1
or G1. So we write,

) dh1

dt
¼ u �

Z t

0

dJ
dh1

dh1

dt

� �
dt

� �
� ðh2 � h1Þ where

dh1

dt
is the instantaneous velocity of the first bacterium

� �

) v1 ¼ u �
Z t

0
G1v1dt

� �
� ðh2 � h1Þ ½where v1 ¼

dh1

dt
and G1 is the gradient of J at h ¼ h1�:

ð8Þ

Now in Eq. (6) we have not yet considered the fact that the event of reproduction is taking place at t = 1 only. So we must
introduce a function of time r(t) = 2*u(�(t � 1)2) (unit step) (u(�(t � 1)2) is multiplied with 2 for getting r(t) = 1, not 0.5,
when t=1) in product with the right hand side of Eq. (6). This provides a sharp impulse of strength 1 unit at time t = 1.
Now it is well known that u(x) may be approximated with the continuous logistic function /(x), where /ðxÞ ¼ 1

1þe�kx. We note
that,

uðxÞ ¼ Lt
k!1

/ðxÞ ¼ Lt
k!1

1
1þ e�kx

ð9Þ

Fig. 3 illustrates how the logistic function may be used to approximate the unit step function used for decision making in
reproduction.

Following this we may write:

rðtÞ ¼ 2�uð�ðt � 1Þ2Þ � 2
1þ ekðt�1Þ2

For moderately large value of k, since t ? 1, we can have jk(t � 1)2j�1 and thus ekðt�1Þ2 � 1þ kðt � 1Þ2. Using this approx-
imation of the exponential term we may replace the unit step function r(t) with another continuous function g(t) where

gðtÞ ¼ 2

2þ kðt � 1Þ2
ðWe can take k ¼ 5Þ

which is not an impulsive function just at t=1 rather a continuous function as shown in Fig. 4. Higher value of k will produce
more effective result. Due to the presence of this function we see that v1 i:e:; dh1

dt

	 

will be maximum at t = 1 and decreases

drastically when we move away from t = 1 in both sides.
So Eq. (8) is modified and becomes,

v1 ¼ u �
Z t

0
G1v1dt

� �
ðh2 � h1Þ �

2

2þ kðt � 1Þ2
: ð10Þ

For ease of calculation we denote the term within the unit step function as M ¼ �
R t

0 G1v1dt to obtain,

v1 ¼ uðMÞðh2 � h1Þ �
2

2þ kðt � 1Þ2
: ð11Þ

Fig. 3. The unit step and the logistic functions.
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Since uðMÞ ¼ Lt
a!1

1
1þe�aM , we take a smaller value of a for getting into the mathematical analysis (say a = 10). Since, we

have the region, under consideration with very low gradient and the velocity of the particle is low, (so product G1v1 is also
small enough), and the time interval of the integration is not too large (as the time domain under consideration is not large),
so we can write, by expanding the exponential part and neglecting the higher order terms

uðMÞ ¼ 1
1þ ð1� aMÞ ¼

1
2ð1� aM=2Þ

Putting this expression in Eq. (11) we get,

v1 ¼
1

2ð1� aM=2Þ ðh2 � h1Þ
2

2ð1þ ðk=2Þðt � 1Þ2Þ
) v1

h2 � h1
ð1þ ðk=2Þðt � 1Þ2Þ ¼ 1

2
1þ aM

2

� �
ð12Þ

[*jh2 � h1j ! 0 but jh2 � h1j– 0 also *j aM
2 j � 1, neglecting higher order terms, 1� aM

2

� ��1 � 1þ aM
2

� �
]

Now the equation given by (12) is true for all values possible values of t, so we can differentiate both sides of it with re-
spect to t and get,

)
ðh2 � h1Þ dv1

dt � v1
dh2
dt �

dh1
dt

	 

ðh2 � h1Þ2

ð1þ ðk=2Þðt � 1Þ2Þ þ v1

h2 � h1
kðt � 1Þ ¼ 1

4
dðaMÞ

dt
ð13Þ

Now, dðCMÞ
dt ¼

dð�a
R t

0
v1G1dtÞ

dt ¼ �av1G1 [By putting the expression for M and applying the Leibniz theorem for differentiating
integrals]

So from (8), we get,

ðh2 � h1Þ dv1
dt � v1

dh2
dt �

dh1
dt

	 

ðh2 � h1Þ2

ð1þ ðk=2Þðt � 1Þ2Þ þ v1

h2 � h1
kðt � 1Þ ¼ �1

4
av1G1

Putting dh1
dt ¼ v1 and dh2

dt ¼ v2 after some further manipulations (where we need to cancel out (h2 � h1), which we can do as
jh2 � h1j? 0 towards the end of reproduction but never jh2 � h1j– 0 according to assumption (iii)), we get,

dv1

dt
¼ � v2

1

h2 � h1
� v1

kðt � 1Þ
1þ ðk=2Þðt � 1Þ2

þ aG1ðh2 � h1Þ
4ð1þ ðk=2Þðt � 1Þ2Þ

� v2

h2 � h1

" #
) dv1

dt
¼ �Pv2

1 � Qv1 ð14Þ

where, P ¼ 1
h2�h1

and Q ¼ kðt�1Þ
1þðk=2Þðt�1Þ2

þ aG1ðh2�h1Þ
4ð1þðk=2Þðt�1Þ2Þ

� v2
h2�h1

	 

.

The above equation is for the first bacterium and similarly we can derive the equation for the second bacterium, which
looks like,

dv2

dt
¼ �P0v2

2 � Q 0v2 ð15Þ

where, P0 ¼ 1
h1�h2

and Q 0 ¼ kðt�1Þ
1þðk=2Þðt�1Þ2

þ aG2ðh1�h2Þ
4ð1þðk=2Þðt�1Þ2Þ

� v1
h1�h2

	 

.

3.2. Physical significance

A possible way to visualize the effect of the dynamics presented in Eqs. (14) and (15) is to see how the velocities of the
bacteria vary over short time intervals over which the coefficients P and Q can be assumed to remain fairly constant. The

Fig. 4. Functions r(t) and g(t).
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velocity of a bacterium (which is at the better place) has been plotted over five short time intervals in Fig. 5 (P and Q are
chosen arbitrarily in those intervals). Note that at the time of reproduction (t = 1) the graph is highly steep indicating sharp
decrease in velocity.

Now if we study the second term in the expression of Q from Eq. (14) i.e. the term aG1ðh2�h1Þ
4ð1þðk=2Þðt�1Þ2Þ

, as G1 ? 0, (h2 � h1) is also

small and a is not taken to be very large. At the denominator also we have got some divisors greater than 1. So the term
becomes insignificantly small and all we can neglect it from Q. In Eq. (15) also we can similarly neglect the term

aG2ðh1�h2Þ
4ð1þðk=2Þðt�1Þ2Þ

from Q
0
.

Again we assume, the velocity of both the particles to be negative for the time being. So we can replace, v1 = � jv1j and
v2 = � jv2j in Qand Q

0
in Eqs. (14) and (15). After doing all this simplifications for getting a better mathematical insight, Eqs.

(11) and (12) become,

dv1

dt
¼ �Pv2

1 � Qv1 ð16Þ

where, P ¼ 1
h2�h1

and Q ¼ kðt�1Þ
1þðk=2Þðt�1Þ2

þ jv2 j
h2�h1

	 

dv2

dt
¼ �P0v2

2 � Q 0v2 ð17Þ

where, P0 ¼ 1
h1�h2

and Q 0 ¼ kðt�1Þ
1þðk=2Þðt�1Þ2

þ jv1 j
h1�h2

	 

.

Now, for h2 > h1 P and Q are both positive. That means the first bacterium slows down very quickly. Whereas the second
particle has P

0
and Q

0
(assuming the other term independent of (h1 � h2) in Q

0
is lesser than this) both negative. That means this

bacterium accelerates. This acceleration is hopefully towards the first bacterium.
Since the rate of change of velocity of bacterium 1 and 2 are dependent on (h2 � h1) and (h1 � h2), respectively, it is evident

that the distance between the two bacteria guides their dynamics. If we assume, h2 > h1 and they do not traverse too long, the
first bacterium is healthier (less accumulated cost) than the second one, when the function is decreasing monotonically in a
minimization problem and also the time rate change of first bacterium is less than that of the second (as depicted in Fig. 6
clearly, where we take J(h) = h2).

So at the time of reproduction, in a two bacteria system, the healthier bacterium when senses that it is in a better position
compared to its fellow bacterium, it hopes that the optima might be very near so it slows down and its search becomes more
fine-tuned. This can be compared with the real bacterium involved in foraging. Whenever it senses that food might be nearby
then it obviously slows down and searches that place thoroughly at cost of some time [34–36].

The second bacterium moves away from that place with a high acceleration quite naturally getting the information from
the first bacterium that the fitter place is away from its present position. In biological system for grouped foraging when one
member of the group share information from its neighbors it tries to move towards the best position found out by the neigh-
boring members [35,36]. Thus we see that reproduction was actually included in BFOA in order to facilitate grouped global
search, which is explained from our small analysis.

3.3. Avoiding premature convergence

Again if we observe the bacterium at the better position more carefully we will be seeing, that this has a tendency to
decelerate at a very high rate and it becomes at rest very quickly. Now when it is near the optima, we can conclude that
as t ?1,vbetter ? 0 (velocity of the better one). Thus as it reaches the optima it stabilize without any further oscillation. Thus
reproduction helps the better bacterium to stabilize at the optima. But the darker side of this fact lies in premature conver-
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Fig. 5. Piece-wise change in velocity over small time intervals.

3350 A. Biswas et al. / Applied Mathematics and Computation 215 (2010) 3343–3355



Author's personal copy

Fig. 6. Initial and final positions of the two bacteria (after one chemotactic lifetime).
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Fig. 7. (a) Original reproduction and modeled reproduction; (b) error in our model.
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gence i.e. the best bacterium can converge towards a local optima and the search process gets disturbed. So we understand
that at the start of search process reproduction can cause premature convergence but the same can lead to a stable system if
applied near the global optima. So we suggest an adaptive scheme related to reproduction operator. The reproduction rate
should be made adaptive and it should be increased gradually towards the end of this search process.

3.4. Parallelism between modeled reproduction and original reproduction

Now for gaining further mathematical insight we do some simplifications over Eq. (16). The effect of reproduction is
mostly pronounced around t = 1, so (t � 1) ? 0. Thus we can neglect the first expression in Q, which contains (t � 1). Again
we restrict our analysis to regions only where gradient is very low, i.e. G1 ? 0. So we can also neglect the second expression
in Q, which contains G1. Thus we get a simplified version of the acceleration of the first bacterium as,

dv1

dt
¼ � v2

1

h2 � h1
þ v1v2

h2 � h1
) d2h1

dt2 ¼
dh1
dt ðv2 � dh1

dt Þ
ðh2 � h1Þ

ð18Þ

This represents the modeled reproduction dynamics where the first bacterium possesses an acceleration given by Eq.
(18). It starts from its initial position and stops when it comes very closer to the second bacterium and this motion occurs
for a finite amount of time. But in original reproduction the first bacterium moves towards the second bacterium instanta-
neously, which is an impossible to model as a practical dynamics (as that needs an infinite velocity). So we consider the first
bacterium to move towards the second one with a uniform speed for the same amount of time as taken in the modeled
dynamics. With this we interconnect the original bacterial foraging and the modeled reproductive dynamics. In Fig. 7a
we empirically try to provide a scenario where the modeled reproduction dynamics very closely imitate the original repro-
duction phenomenon. In Fig. 7b the error plot of our analysis is provided.

3.5. The adaptive reproduction BFOA (ARBFOA)

Following the same thought deduced in Section 3.3, we derive a new model for the BFO algorithm, called the Adaptive
Reproduction Bacterial Foraging Optimization Algorithm (ARBFOA). In ARBFOA, the frequency of reproduction (determined
by the number of chemotactic steps under each reproduction step) is made varying and it is gradually increased towards the
end of the process. To do this the Nc (no of chemotactic steps in one reproduction loop) is gradually scaled down using the
following formula,

NcðkÞ ¼ Ncð0Þ � ðk� 1Þ � DNc ð19Þ

where, Nc(k) is the no of chemotactic steps at the kth reproduction loop.
Nc(0) is the initial no of chemotactic steps (when k = 1).
DNc is the change in no of chemotactic steps and is a positive integral quantity.

We take Ned = 1, that is elimination dispersal event to take place just once.

Table 1
Description of the benchmark functions used.

Function Mathematical representation Range of
search

Optima

Sphere model f1ð~xÞ ¼
Pp

i¼1x2
i

(�100, 100)p
f1ð~0Þ ¼ 0

Schwefel’s problem 2.22 f2ð~xÞ ¼
Pp

i¼1jxij þ
Qp

i¼1jxij (�10, 10)p
f2ð~0Þ ¼ 0

Rosenbrock’s f3ð~xÞ ¼
Pp�1

i¼1 ½100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2� (�100, 100)p
f3ð~1Þ ¼ 0

Griewank f4ð~xÞ ¼ 1
4000

Pp
i¼1x2

i �
Qp

i¼1 cos xiffi
i
p
	 


þ 1 (�600, 600)p
f4ð~0Þ ¼ 0

Ackley f5ð~xÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1p
Pp

i¼1x2
i Þ

q
� expð1p

Pp
i¼1 cos 2pxiÞ þ 20þ e

	 

(�32, 32)p

f5ð~0Þ ¼ 0

Rastrigin f6ð~xÞ ¼
Pp

i¼1½x
2
i � 10 cosð2pxiÞ þ 10� (�10, 10)p

f6ð~0Þ ¼ 0
Six-Hump Camel-Back

Function
f7ð~xÞ ¼ 4x2

0 � 2:1x4
0 þ 1

3 x6
0 þ x0x1 � 4x2

1 þ 4x4
1

(�5, 5)2 f7(0.08983, �0.7126)
=�1.0316285

Goldstein-Price
Function

f8ð~xÞ ¼ f1þ ðx0 þ x1 þ 1Þ2ð19� 14x0 þ 3x2
0 � 14x1 � 6x0x1

þ3x2
1Þgf30þ ð2x0 � 3x1Þ2ð18� 32x0 þ 12x2

0 þ 48x1 � 36x0x1 þ 27x2
1Þg

(�2, 2)2 f8(0, 1)=3.0000000

Rotated Hyper-Ellipsoid
function

f9ð~xÞ ¼
Pp

i¼1

Pi
j¼1xj

	 
2 (�100, 100)p
f9ð~0Þ ¼ 0

Step f10ð~xÞ ¼
Pp

i¼1 bxi þ 0:5cð Þ2 (�100, 100)p f10ð~qÞ ¼ 0;� 1
2 6 qi <

1
2

Shekel’s Foxholes
function f11ð~xÞ ¼ 1

500þ
P25

j¼1
1

jþ
P2

i¼1
ðxi�aijÞ6

� ��1

where

ðaijÞ ¼
�32 �16 0 16 32 �32 . . . 0 16 32
�32 �32 �32 �32 �32 �16 . . . 32 32 32

� �
(-65.536,
65.536)2

f11(�32, � 32) = 0.998
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We also compare classical BFOA with ARBFOA over a test-suite of eleven well-known benchmark functions [37]. In Ta-
ble 1, p represents the number of dimensions and we used p=15, 30, 45 and 60. Table 1 also summarizes the feasible search
ranges used for all the functions and their theoretical optima. An asymmetrical initialization procedure has been used here
following the work reported in [38].

Both the algorithms compared, use classical parameter setup as prescribed by Passino in [1], except the difference that the
reproduction frequency in ARBFOA has been made adaptive according to (19). After performing a series of hand-tuning
experiments, we found that keeping DNc = 3, provides considerably good result for all the benchmark functions dealt here.
The parameter settings that were kept same for both the algorithms have been provided in Table 2.

Table 3 compares the algorithms on the quality of the optimum solution. The mean and the standard deviation (within
parentheses) of the best-of-run values for 50 independent runs of both the two algorithms are presented. Each algorithm was
run up to a predetermined maximum number of FEs (depending upon the complexity of the problem). The best solution in
each case has been marked in bold.

We employed t-tests to compare the means of the results produced by the best ABFOA scheme and the best of the other
competitor algorithms over each problem. The t-tests are quite popular among researchers in evolutionary computing and
they are fairly robust to violations of a Gaussian distribution with large number of samples like 50 [39].

Table 2
Common parameter setup for BFOA and ARBFOA.

S Nc(0)/Nc Ns Ned Nre ped dattractant wattractant wrepellant hrepellant DNc

10 40 12 4 16 0.25 0.1 0.2 10 0.1 3

Table 3
Average and the standard deviation (in parentheses) of the best-of-run solution for 50 independent runs tested on eight benchmark functions.

Function Dimensions No. of FEs Mean best value (standard deviation) t-Value between ARBFOA and BFOA

BFOA ARBFO

f1 15 1 	 104 0.0016 (0.000035) 0.0009 (0.000074) 10.8687
30 5 	 104 0.094 (0.0025) 0.043 (0.0011) 132.0340
45 1 	 105 0.873 (0.1126) 0.535 (0.0928) 16.3798
60 5 	 105 1.728 (0.2125) 0.687 (0.1472) 28.4754

f2 15 1 	 104 0.0705 (0.0623) 0.0361 (0.0155) 3.7889
30 5 	 104 0.216 (0.1254) 0.112 (0.05465) 5.3760
45 1 	 105 0.873 (0.136) 0.543 (0.1824) 10.2560
60 5 	 105 1.705 (0.762) 1.239 (0.7285) 3.1257

f3 15 1 	 104 0.2654 (0.0152) 0.0745 (0.4536) 8.5653
30 5 	 104 4.5354 (1.2644) 2.5747 (1.7473) 12.2545
45 1 	 105 12.7659 (3.6846) 6.5275 (3.9562) 25.7567
60 5 	 105 54.5457 (15.5275) 21.3343 (5.8620) 48.8651

f4 15 1 	 104 0.2812 (0.0216) 0.0321 (0.02264) 3.0849
30 5 	 104 0.3729 (0.0346) 0.1823 (0.0946) 2.5838
45 1 	 105 0.6351 (0.0522) 0.3069 (0.526) 2.6417
60 5 	 105 0.8324 (0.0764) 0.5638 (0.3452) 17.6261

f5 15 1 	 104 0.9332 (0.0287) 0.7613 (0.0542) 161.740
30 5 	 104 2.3243 (1.8833) 0.7570 (0.5011) 13.2057
45 1 	 105 3.4564 (3.4394) 1.3453 (0.1945) 16.1300
60 5 	 105 4.3247 (1.5613) 2.6481 (0.4551) 7.6454

f6 15 1 	 104 0.4325 (0.0543) 0.2313 (0.0274) 47.4536
30 5 	 104 1.4423 (1.3425) 0.4570 (0.4563) 34.2642
45 1 	 105 2.3442 (1.5334) 0.9354 (0.6647) 25.1647
60 5 	 105 2.9675 (2.5613) 1.1335 (0.7447) 7.6464

f7 2 1 	 104 �1.025837 (0.000827) �1.031604 (0.000242) 24.1644

f8 2 1 	 104 3.156285 (0.109365) 3.000012 (0.000032) 7.1446

f9 15 1 	 104 0.0285 (0.0152) 0.0144 (0.0126) 5.0499
30 5 	 104 0.388 (0.2421) 0.136 (0.0454) 7.2341
45 1 	 105 3.9925 (2.8329) 1.4527 (1.3274) 5.7409
60 5 	 105 6.8234 (3.6231) 2.3343 (1.2917) 9.8424

f10 15 1 	 104 0.4342 (0.0632) 0.0368 (0.0532) 132.759
30 5 	 104 0.9227 (0.4829) 0.4628 (0.3194) 34.4256
45 1 	 105 1.4538 (0.6927) 0.8751 (0.8745) 27.1753
60 5 	 105 5.2428 (1.5032) 1.6734 (0.3692) 17.6454

f11 2 1 	 104 1.056433 (0.01217) 0.9998023 (0.00825) 1.4536
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When the t-value is higher than 1.645 (for degrees of freedom=49), there is a significant difference between the two algo-
rithms with a 95% confidence level. The t-values between the ARBFOA and BFOA methods are shown in the sixth column of
Table 3. We see that most t-values in this table are higher than 1.645. Therefore, the performance of the ARBFOA is statis-
tically significantly better than that of other optimization methods with a 95% confidence level.

Fig. 8 depicts the locus of the best bacterium of classical BFOA and ARBFOA over the constant cost contours of the first
three unimodal functions of Table 1. The functions are in 2 dimensions (to facilitate visualization) and on each of them BFOA
and ARBFOA are run for the same number of FEs. We omit the similar plots for rest of the functions in order to save space. The
plots indicate that ARBFOA is able to find the global optima quickly and more efficiently as compared to the classical BFOA.

4. Conclusions

We presented a simple mathematical analysis of the reproduction step used in the BFOA. For a two bacterial system, it has
formulated the effect of the reproduction on bacterial dynamics in the form of two coupled differential equations. Although

Fig. 8. Final position of best bacterium for BFOA and ARBFOA near the global optima.
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it was not possible to have an explicit solution of the equations (as their coefficients vary with time in a complex manner),
important conclusions regarding the search strategies of the bacterial population at the time of reproduction could be de-
rived from the analysis and a new model of bacterial foraging namely ARBFOA is proposed which incorporates an adaptive
reproduction rate. According to our limited experimental results, ARBFOA outperformed its classical counterpart on eight
well-known benchmark functions in a statistically meaningful way. We would like to point out that this paper is a first step
towards the mathematical analysis of the reproduction-dynamics in BFOA, which appears as an attractive global optimiza-
tion technique of current interest. Future research should focus on extending the analysis presented here, to a group of bac-
teria working on a multi-dimensional fitness landscape and also include effect of the chemotaxis and elimination-dispersal
events in the same.
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